Cargando…
Microarrays as Research Tools and Diagnostic Devices
Molecular diagnostics comprises a main analytical division in clinical laboratory diagnostics. The analysis of RNA or DNA helps to diagnose infectious diseases and identify genetic determined disorders or even cancer. Starting from mono-parametric tests within the last years, technologies have evolv...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120549/ http://dx.doi.org/10.1007/978-3-319-17305-4_13 |
Sumario: | Molecular diagnostics comprises a main analytical division in clinical laboratory diagnostics. The analysis of RNA or DNA helps to diagnose infectious diseases and identify genetic determined disorders or even cancer. Starting from mono-parametric tests within the last years, technologies have evolved that allow for the detection of many parameters in parallel, e.g., by using multiplex nucleic acid amplification techniques, microarrays, or next-generation sequencing technologies. The introduction of closed-tube systems as well as lab-on-a-chip devices further resulted in a higher automation degree with a reduced contamination risk. These applications complement or even stepwise replace classical methods in clinical microbiology like virus cultures, resistance determination, microscopic and metabolic analyses, as well as biochemical or immunohistochemical assays. In addition, novel diagnostic markers appear, like noncoding RNAs and miRNAs providing additional room for novel biomarkers. This article provides an overview of microarrays as diagnostics devices and research tools. Introduced in 1995 for transcription analysis, microarrays are used today to detect several different biomolecules like DNA, RNA, miRNA, and proteins among others. Mainly used in research, some microarrays also found their way to clinical diagnostics. Further, closed lab-on-a-chip devices that use DNA microarrays as detection tools are discussed, and additionally, an outlook toward applications of next-generation sequencing tools in diagnostics will be given. |
---|