Cargando…
Co-evolutionary Models for Reconstructing Ancestral Genomic Sequences: Computational Issues and Biological Examples
The inference of ancestral genomes is a fundamental problem in molecular evolution. Due to the statistical nature of this problem, the most likely or the most parsimonious ancestral genomes usually include considerable error rates. In general, these errors cannot be abolished by utilizing more exhau...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120581/ http://dx.doi.org/10.1007/978-3-642-04744-2_14 |
_version_ | 1783515004658515968 |
---|---|
author | Tuller, Tamir Birin, Hadas Kupiec, Martin Ruppin, Eytan |
author_facet | Tuller, Tamir Birin, Hadas Kupiec, Martin Ruppin, Eytan |
author_sort | Tuller, Tamir |
collection | PubMed |
description | The inference of ancestral genomes is a fundamental problem in molecular evolution. Due to the statistical nature of this problem, the most likely or the most parsimonious ancestral genomes usually include considerable error rates. In general, these errors cannot be abolished by utilizing more exhaustive computational approaches, by using longer genomic sequences, or by analyzing more taxa. In recent studies we showed that co-evolution is an important force that can be used for significantly improving the inference of ancestral genome content. In this work we formally define a computational problem for the inference of ancestral genome content by co-evolution. We show that this problem is NP-hard and present both a Fixed Parameter Tractable (FPT) algorithm, and heuristic approximation algorithms for solving it. The running time of these algorithms on simulated inputs with hundreds of protein families and hundreds of co-evolutionary relations was fast (up to four minutes) and it achieved an approximation ratio < 1.3. We use our approach to study the ancestral genome content of the Fungi. To this end, we implement our approach on a dataset of 33,931 protein families and 20,317 co-evolutionary relations. Our algorithm added and removed hundreds of proteins from the ancestral genomes inferred by maximum likelihood (ML) or maximum parsimony (MP) while slightly affecting the likelihood/parsimony score of the results. A biological analysis revealed various pieces of evidence that support the biological plausibility of the new solutions. |
format | Online Article Text |
id | pubmed-7120581 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2009 |
record_format | MEDLINE/PubMed |
spelling | pubmed-71205812020-04-06 Co-evolutionary Models for Reconstructing Ancestral Genomic Sequences: Computational Issues and Biological Examples Tuller, Tamir Birin, Hadas Kupiec, Martin Ruppin, Eytan Comparative Genomics Article The inference of ancestral genomes is a fundamental problem in molecular evolution. Due to the statistical nature of this problem, the most likely or the most parsimonious ancestral genomes usually include considerable error rates. In general, these errors cannot be abolished by utilizing more exhaustive computational approaches, by using longer genomic sequences, or by analyzing more taxa. In recent studies we showed that co-evolution is an important force that can be used for significantly improving the inference of ancestral genome content. In this work we formally define a computational problem for the inference of ancestral genome content by co-evolution. We show that this problem is NP-hard and present both a Fixed Parameter Tractable (FPT) algorithm, and heuristic approximation algorithms for solving it. The running time of these algorithms on simulated inputs with hundreds of protein families and hundreds of co-evolutionary relations was fast (up to four minutes) and it achieved an approximation ratio < 1.3. We use our approach to study the ancestral genome content of the Fungi. To this end, we implement our approach on a dataset of 33,931 protein families and 20,317 co-evolutionary relations. Our algorithm added and removed hundreds of proteins from the ancestral genomes inferred by maximum likelihood (ML) or maximum parsimony (MP) while slightly affecting the likelihood/parsimony score of the results. A biological analysis revealed various pieces of evidence that support the biological plausibility of the new solutions. 2009 /pmc/articles/PMC7120581/ http://dx.doi.org/10.1007/978-3-642-04744-2_14 Text en © Springer-Verlag Berlin Heidelberg 2009 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Tuller, Tamir Birin, Hadas Kupiec, Martin Ruppin, Eytan Co-evolutionary Models for Reconstructing Ancestral Genomic Sequences: Computational Issues and Biological Examples |
title | Co-evolutionary Models for Reconstructing Ancestral Genomic Sequences: Computational Issues and Biological Examples |
title_full | Co-evolutionary Models for Reconstructing Ancestral Genomic Sequences: Computational Issues and Biological Examples |
title_fullStr | Co-evolutionary Models for Reconstructing Ancestral Genomic Sequences: Computational Issues and Biological Examples |
title_full_unstemmed | Co-evolutionary Models for Reconstructing Ancestral Genomic Sequences: Computational Issues and Biological Examples |
title_short | Co-evolutionary Models for Reconstructing Ancestral Genomic Sequences: Computational Issues and Biological Examples |
title_sort | co-evolutionary models for reconstructing ancestral genomic sequences: computational issues and biological examples |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120581/ http://dx.doi.org/10.1007/978-3-642-04744-2_14 |
work_keys_str_mv | AT tullertamir coevolutionarymodelsforreconstructingancestralgenomicsequencescomputationalissuesandbiologicalexamples AT birinhadas coevolutionarymodelsforreconstructingancestralgenomicsequencescomputationalissuesandbiologicalexamples AT kupiecmartin coevolutionarymodelsforreconstructingancestralgenomicsequencescomputationalissuesandbiologicalexamples AT ruppineytan coevolutionarymodelsforreconstructingancestralgenomicsequencescomputationalissuesandbiologicalexamples |