Cargando…

Specific Serum Markers of IPF: What Is the Significance of KL-6, SP-A, and SP-D?

Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive, fibrosing interstitial pneumonia of unknown cause. It is characterized by the progressive worsening of lung function and has a poor prognosis (median survival is approximately 3 years). However, the clinical c...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiba, Hirofumi, Takahashi, Hiroki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2015
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120645/
http://dx.doi.org/10.1007/978-4-431-55582-7_5
Descripción
Sumario:Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive, fibrosing interstitial pneumonia of unknown cause. It is characterized by the progressive worsening of lung function and has a poor prognosis (median survival is approximately 3 years). However, the clinical course of disease shows considerable individual variability. Therefore, it is important to monitor the clinical course and to predict prognosis for optimal therapy. Serum biomarkers are both less invasive and reproducible diagnostic tools. Useful biomarkers for patients with IPF are strongly coveted; however, to date, there are no biomarkers that are globally known. In Japan, surfactant protein (SP)-A, SP-D, and KL-6 are commonly used as serum markers of interstitial pneumonia, including IPF, in the clinical setting, and empirical data has been accumulated over 10 years. SP-A and SP-D are hydrophilic proteins and members of the collectin family. These collectins have been shown to function as host defense lectins in the lung. KL-6 is a high molecular weight glycoprotein and now classified as a human MUC1 mucin protein. These three proteins are mainly synthesized by alveolar type II cells. The mechanisms of increase for these protein levels in sera of patients with IPF are probably a combination of a loss of epithelial integrity due to injury and an increased mass of type II cells due to hyperplasia. It has been revealed that those proteins are useful for monitoring the clinical course and predicting prognosis as well as for the diagnosis of IPF. In this review article, the molecular structures and biological functions of these biomarkers are outlined, and we discuss the clinical application of these biomarkers for patients with IPF.