Cargando…
Pseudotyped Vesicular Stomatitis Virus for Analysis of Virus Entry Mediated by SARS Coronavirus Spike Proteins
Severe acute respiratory syndrome (SARS) coronavirus (CoV) contains a spike (S) protein that binds to a receptor molecule (angiotensin-converting enzyme 2; ACE2), induces membrane fusion, and serves as a neutralizing epitope. To study the functions of the S protein, we describe here the generation o...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7120752/ https://www.ncbi.nlm.nih.gov/pubmed/19057867 http://dx.doi.org/10.1007/978-1-59745-181-9_23 |
Sumario: | Severe acute respiratory syndrome (SARS) coronavirus (CoV) contains a spike (S) protein that binds to a receptor molecule (angiotensin-converting enzyme 2; ACE2), induces membrane fusion, and serves as a neutralizing epitope. To study the functions of the S protein, we describe here the generation of SARS-CoV S protein-bearing vesicular stomatitis virus (VSV) pseudotype using a VSV∆G∗/GFP system in which the G gene is replaced by the green fluorescent protein (GFP) gene (VSV-SARS-CoV-St19/GFP). Partial deletion of the cytoplasmic domain of SARS-CoV S protein (SARS-CoV-St19) allowed efficient incorporation into the VSV particle that enabled the generation of a high titer of pseudotype virus. Neutralization assay with anti-SARS-CoV antibody revealed that VSV-SARS-St19/GFP pseudotype infection is mediated by SARS-CoV S protein. The VSV∆G∗/SEAP system, which secretes alkaline phosphatase instead of GFP, was also generated as a VSV pseudotype having SARS-CoV S protein (VSV-SARS-CoV-St19/SEAP). This system enabled high-throughput analysis of SARS-CoV S protein-mediated cell entry by measuring alkaline phosphatase activity. Thus, VSV pseudotyped with SARS-CoV S protein is useful for developing a rapid detection system for neutralizing antibody specific for SARS-CoV infection as well as studying the S-mediated cell entry of SARS-CoV. |
---|