Cargando…
Prevention and Control of Influenza Viruses
The 2003–2004 outbreaks of highly pathogenic avian influenza (HPAI) have proven to be disastrous to the regional poultry industry in Asia, and have raised serious worldwide public health apprehension regarding the steps that should be taken to urgently control HPAI. Control measures must be taken ba...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7121144/ http://dx.doi.org/10.1007/978-3-319-05512-1_11 |
Sumario: | The 2003–2004 outbreaks of highly pathogenic avian influenza (HPAI) have proven to be disastrous to the regional poultry industry in Asia, and have raised serious worldwide public health apprehension regarding the steps that should be taken to urgently control HPAI. Control measures must be taken based on the principles of biosecurity and disease management and at the same time making public aware of the precautionary measures at the verge of outbreak. Creation of protection and surveillance zones, various vaccination strategies viz. routine, preventive, emergency, mass and targeted vaccination programmes using live, inactivated and recombinant vaccines are the common strategies adopted in different parts of the globe. The new generation vaccines include recombinant vaccines and recombinant fusion vaccine. The pro-poor disease control programmes, giving compensation and subsidies to the farmers along with effective and efficient Veterinary Services forms integral part of control of HPAI. Following biosecurity principles and vaccination forms integral part of control programme against swine and equine influenza as well. Use of neuraminidase (NA) inhibitors (Zanamivir and Oseltamivir) for the treatment of human influenza has been widely accepted worldwide. The threat of increasing resistance of the flu viruses to these antivirals has evoked interest in the development of novel antiviral drugs for influenza virus such as inhibitors of cellular factors and host signalling cascades, cellular miRNAs, siRNA and innate immune peptides (defensins and cathelicidins). Commercial licensed inactivated vaccines for humans against influenza A and B viruses are available consisting of three influenza viruses: influenza type A subtype H3N2, influenza type A subtype H1N1 (seasonal) virus strain and influenza type B virus strain. As per WHO, use of tetravaccine consisting of antigens of influenza virus serotypes H3N2, H1N1, B and H5 is the most promising method to control influenza pandemic. All healthy children in many countries are required to be vaccinated between 6 and 59 months of age. The seasonal vaccines currently used in humans induce strain-specific humoral immunity as the antibodies. Universal influenza virus vaccines containing the relatively conserved ectodomain of M2 (M2e), M1, HA fusion peptide and stalk domains, NA, NP alone or in combination have been developed which have been shown to induce cross-protection. The T cell-based vaccines are another recent experimental approach that has been shown to elicit broad-spectrum heterosubtypic immunity in the host. As far as HPAI is concerned, various pandemic preparedness strategies have been documented. |
---|