Cargando…

Using ASMase Knockout Mice to Model Human Diseases

Acid sphingomyelinase (ASMase) is a key initiator of sphingomyelin/ceramide signal transduction activated by many stress stimuli. Over the past two decades, much progress has been made in defining the clinical relevance of sphingomyelin/ceramide signaling in numerous diseases using ASMase knockout m...

Descripción completa

Detalles Bibliográficos
Autores principales: Hua, Guoqiang, Kolesnick, Richard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7121422/
https://www.ncbi.nlm.nih.gov/pubmed/23563650
http://dx.doi.org/10.1007/978-3-7091-1511-4_2
Descripción
Sumario:Acid sphingomyelinase (ASMase) is a key initiator of sphingomyelin/ceramide signal transduction activated by many stress stimuli. Over the past two decades, much progress has been made in defining the clinical relevance of sphingomyelin/ceramide signaling in numerous diseases using ASMase knockout mice. Organs that operate this pathway are numerous and the disease states regulated are diverse, with ceramide generation governing injury in tumor, gut, ovary, brain, lung, heart, liver, and during infection. This chapter emphasizes evolutionary conservation of sphingolipid stress signaling and mammalian adaptations that permit transduction of organotypic responses. Recognition that the sphingomyelin/ceramide transducer calibrates extent of tissue injury, ultimately acting as a molecular switch that determines organ fate, is driving development of new pharmacologic concepts and tools to intervene therapeutically.