Cargando…
P-Type Lectins: Cation-Dependent Mannose-6-Phosphate Receptor
In eukaryotic cells, post-translational modification of secreted proteins and intracellular protein transport between organelles are ubiquitous features. One of the most studied systems is the N-linked glycosylation pathway in the synthesis of secreted glycoproteins (Schrag et al. 2003). The N-linke...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7121444/ http://dx.doi.org/10.1007/978-3-7091-1065-2_3 |
Sumario: | In eukaryotic cells, post-translational modification of secreted proteins and intracellular protein transport between organelles are ubiquitous features. One of the most studied systems is the N-linked glycosylation pathway in the synthesis of secreted glycoproteins (Schrag et al. 2003). The N-linked glycoproteins are subjected to diverse modifications and are transported through ER and Golgi apparatus to their final destinations in- and outside the cell. Incorporation of cargo glycoproteins into transport vesicles is mediated by transmembrane cargo receptors, which have been identified as intracellular lectins. For example, mannose 6-phosphate receptors (Ghosh et al. 2003) function as a cargo receptor for lysosomal proteins in the trans-Golgi network, whereas ERGIC-53 (Zhang et al. 2003) and its yeast orthologs Emp46/47p (Sato and Nakano 2002) are transport lectins for glycoproteins that are transported out of ER. |
---|