Cargando…

MARs and MARBPs: Key modulators of gene regulation and disease manifestation

The DNA in eukaryotic genome is compartmentalized into various domains by a series of loops tethered onto the base of nuclear matrix. Scaffold/ Matrix attachment regions (S/MAR) punctuate these attachment sites and govern the nuclear architecture by establishing chromatin boundaries. In this context...

Descripción completa

Detalles Bibliográficos
Autores principales: Chattopadhyay, Samit, Pavithra, Lakshminarasimhan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7121529/
http://dx.doi.org/10.1007/1-4020-5466-1_10
Descripción
Sumario:The DNA in eukaryotic genome is compartmentalized into various domains by a series of loops tethered onto the base of nuclear matrix. Scaffold/ Matrix attachment regions (S/MAR) punctuate these attachment sites and govern the nuclear architecture by establishing chromatin boundaries. In this context, specific proteins that interact with and bind to MAR sequences called MAR binding proteins (MARBPs), are of paramount importance, as these sequences spool the proteins that regulate transcription, replication, repair and recombination. Recent evidences also suggest a role for these cis-acting elements in viral integration, replication and transcription, thereby affecting host immune system. Owing to the complex nature of these nucleotide sequences, less is known about the MARBPs that bind to and bring about diverse effects on chromatin architecture and gene function. Several MARBPs have been identified and characterized so far and the list is growing. The fact that most the MARBPs exist in a co-repressor/ co-activator complex and bring about gene regulation makes them quintessential for cellular processes. This participation in gene regulation means that any perturbation in the regulation and levels of MARBPs could lead to disease conditions, particularly those caused by abnormal cell proliferation, like cancer. In the present chapter, we discuss the role of MARs and MARBPs in eukaryotic gene regulation, recombination, transcription and viral integration by altering the local chromatin structure and their dysregulation in disease manifestation