Cargando…
Generating Fake but Realistic Headlines Using Deep Neural Networks
Social media platforms such as Twitter and Facebook implement filters to detect fake news as they foresee their transition from social media platform to primary sources of news. The robustness of such filters lies in the variety and the quality of the data used to train them. There is, therefore, a...
Autores principales: | Dandekar, Ashish, Zen, Remmy A. M., Bressan, Stéphane |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7121779/ http://dx.doi.org/10.1007/978-3-319-64471-4_34 |
Ejemplares similares
-
Hydrological Process Surrogate Modelling and Simulation with Neural Networks
por: Zhang, Ruixi, et al.
Publicado: (2020) -
Fake news reminders and veracity labels differentially benefit memory and belief accuracy for news headlines
por: Kemp, Paige L., et al.
Publicado: (2022) -
EchoFakeD: improving fake news detection in social media with an efficient deep neural network
por: Kaliyar, Rohit Kumar, et al.
Publicado: (2021) -
CB-Fake: A multimodal deep learning framework for automatic fake news detection using capsule neural network and BERT
por: Palani, Balasubramanian, et al.
Publicado: (2021) -
Headliners: Reproduction: Oocyte Generation in Adult Mice
por: Phelps, Jerry
Publicado: (2005)