Cargando…

Mining Good Sliding Window for Positive Pathogens Prediction in Pathogenic Spectrum Analysis

Positive pathogens prediction is the basis of pathogenic spectrum analysis, which is a meaningful work in public health. Gene Expression Programming (GEP) can develop the model without predetermined assumptions, so applying GEP to positive pathogens prediction is desirable. However, traditional time...

Descripción completa

Detalles Bibliográficos
Autores principales: Duan, Lei, Tang, Changjie, Gou, Chi, Jiang, Min, Zuo, Jie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122051/
http://dx.doi.org/10.1007/978-3-642-25856-5_12
Descripción
Sumario:Positive pathogens prediction is the basis of pathogenic spectrum analysis, which is a meaningful work in public health. Gene Expression Programming (GEP) can develop the model without predetermined assumptions, so applying GEP to positive pathogens prediction is desirable. However, traditional time-adjacent sliding window may not be suitable for GEP evolving accurate prediction model. The main contributions of this work include: (1) applying GEP-based prediction method to diarrhea syndrome related pathogens prediction, (2) analyzing the disadvantages of traditional time-adjacent sliding window in GEP prediction, (3) proposing a heuristic method to mine good sliding window for generating training set that is used for GEP evolution, (4) proving the problem of training set selection is NP-hard, (5) giving an experimental study on both real-world and simulated data to demonstrate the effectiveness of the proposed method, and discussing some future studies.