Cargando…
Nanomaterials – the Next Great Challenge for Qsar Modelers
In this final chapter a new perspective for the application of QSAR in the nanosciences is discussed. The role of nanomaterials is rapidly increasing in many aspects of everyday life. This is promoting a wide range of research needs related to both the design of new materials with required propertie...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122189/ http://dx.doi.org/10.1007/978-1-4020-9783-6_14 |
Sumario: | In this final chapter a new perspective for the application of QSAR in the nanosciences is discussed. The role of nanomaterials is rapidly increasing in many aspects of everyday life. This is promoting a wide range of research needs related to both the design of new materials with required properties and performing a comprehensive risk assessment of the manufactured nanoparticles. The development of nanoscience also opens new areas for QSAR modelers. We have begun this contribution with a detailed discussion on the remarkable physical–chemical properties of nanomaterials and their specific toxicities. Both these factors should be considered as potential endpoints for further nano-QSAR studies. Then, we have highlighted the status and research needs in the area of molecular descriptors applicable to nanomaterials. Finally, we have put together currently available nano-QSAR models related to the physico-chemical endpoints of nanoparticles and their activity. Although we have observed many problems (i.e., a lack of experimental data, insufficient and inadequate descriptors), we do believe that application of QSAR methodology will significantly support nanoscience in the near future. Development of reliable nano-QSARs can be considered as the next challenging task for the QSAR community. |
---|