Cargando…
Nucleic-Acid Testing, New Platforms and Nanotechnology for Point-of-Decision Diagnosis of Animal Pathogens
Accurate disease diagnosis in animals is crucial for animal well-being but also for preventing zoonosis transmission to humans. In particular, livestock diseases may constitute severe threats to humans due to the particularly high physical contact and exposure and, also, be the cause of important ec...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122192/ https://www.ncbi.nlm.nih.gov/pubmed/25399103 http://dx.doi.org/10.1007/978-1-4939-2004-4_20 |
_version_ | 1783515364196352000 |
---|---|
author | Teles, Fernando Fonseca, Luís |
author_facet | Teles, Fernando Fonseca, Luís |
author_sort | Teles, Fernando |
collection | PubMed |
description | Accurate disease diagnosis in animals is crucial for animal well-being but also for preventing zoonosis transmission to humans. In particular, livestock diseases may constitute severe threats to humans due to the particularly high physical contact and exposure and, also, be the cause of important economic losses, even in non-endemic countries, where they often arise in the form of rapid and devastating epidemics. Rapid diagnostic tests have been used for a long time in field situations, particularly during outbreaks. However, they mostly rely on serological approaches, which may confirm the exposure to a particular pathogen but may be inappropriate for point-of-decision (point-of-care) settings when emergency responses supported on early and accurate diagnosis are required. Moreover, they often exhibit modest sensitivity and hence significantly depend on later result confirmation in central or reference laboratories. The impressive advances observed in recent years in materials sciences and in nanotechnology, as well as in nucleic-acid synthesis and engineering, have led to an outburst of new in-the-bench and prototype tests for nucleic-acid testing towards point-of-care diagnosis of genetic and infectious diseases. Manufacturing, commercial, regulatory, and technical nature issues for field applicability more likely have hindered their wider entrance into veterinary medicine and practice than have fundamental science gaps. This chapter begins by outlining the current situation, requirements, difficulties, and perspectives of point-of-care tests for diagnosing diseases of veterinary interest. Nucleic-acid testing, particularly for the point of care, is addressed subsequently. A range of valuable signal transduction mechanisms commonly employed in proof-of-concept schemes and techniques born on the analytical chemistry laboratories are also described. As the essential core of this chapter, sections dedicated to the principles and applications of microfluidics, lab-on-a-chip, and nanotechnology for the development of point-of-care tests are presented. Microdevices already applied or under development for application in field diagnosis of animal diseases are reviewed. |
format | Online Article Text |
id | pubmed-7122192 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
record_format | MEDLINE/PubMed |
spelling | pubmed-71221922020-04-06 Nucleic-Acid Testing, New Platforms and Nanotechnology for Point-of-Decision Diagnosis of Animal Pathogens Teles, Fernando Fonseca, Luís Veterinary Infection Biology: Molecular Diagnostics and High-Throughput Strategies Article Accurate disease diagnosis in animals is crucial for animal well-being but also for preventing zoonosis transmission to humans. In particular, livestock diseases may constitute severe threats to humans due to the particularly high physical contact and exposure and, also, be the cause of important economic losses, even in non-endemic countries, where they often arise in the form of rapid and devastating epidemics. Rapid diagnostic tests have been used for a long time in field situations, particularly during outbreaks. However, they mostly rely on serological approaches, which may confirm the exposure to a particular pathogen but may be inappropriate for point-of-decision (point-of-care) settings when emergency responses supported on early and accurate diagnosis are required. Moreover, they often exhibit modest sensitivity and hence significantly depend on later result confirmation in central or reference laboratories. The impressive advances observed in recent years in materials sciences and in nanotechnology, as well as in nucleic-acid synthesis and engineering, have led to an outburst of new in-the-bench and prototype tests for nucleic-acid testing towards point-of-care diagnosis of genetic and infectious diseases. Manufacturing, commercial, regulatory, and technical nature issues for field applicability more likely have hindered their wider entrance into veterinary medicine and practice than have fundamental science gaps. This chapter begins by outlining the current situation, requirements, difficulties, and perspectives of point-of-care tests for diagnosing diseases of veterinary interest. Nucleic-acid testing, particularly for the point of care, is addressed subsequently. A range of valuable signal transduction mechanisms commonly employed in proof-of-concept schemes and techniques born on the analytical chemistry laboratories are also described. As the essential core of this chapter, sections dedicated to the principles and applications of microfluidics, lab-on-a-chip, and nanotechnology for the development of point-of-care tests are presented. Microdevices already applied or under development for application in field diagnosis of animal diseases are reviewed. 2014-08-11 /pmc/articles/PMC7122192/ /pubmed/25399103 http://dx.doi.org/10.1007/978-1-4939-2004-4_20 Text en © Springer Science+Business Media New York 2015 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Teles, Fernando Fonseca, Luís Nucleic-Acid Testing, New Platforms and Nanotechnology for Point-of-Decision Diagnosis of Animal Pathogens |
title | Nucleic-Acid Testing, New Platforms and Nanotechnology for Point-of-Decision Diagnosis of Animal Pathogens |
title_full | Nucleic-Acid Testing, New Platforms and Nanotechnology for Point-of-Decision Diagnosis of Animal Pathogens |
title_fullStr | Nucleic-Acid Testing, New Platforms and Nanotechnology for Point-of-Decision Diagnosis of Animal Pathogens |
title_full_unstemmed | Nucleic-Acid Testing, New Platforms and Nanotechnology for Point-of-Decision Diagnosis of Animal Pathogens |
title_short | Nucleic-Acid Testing, New Platforms and Nanotechnology for Point-of-Decision Diagnosis of Animal Pathogens |
title_sort | nucleic-acid testing, new platforms and nanotechnology for point-of-decision diagnosis of animal pathogens |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122192/ https://www.ncbi.nlm.nih.gov/pubmed/25399103 http://dx.doi.org/10.1007/978-1-4939-2004-4_20 |
work_keys_str_mv | AT telesfernando nucleicacidtestingnewplatformsandnanotechnologyforpointofdecisiondiagnosisofanimalpathogens AT fonsecaluis nucleicacidtestingnewplatformsandnanotechnologyforpointofdecisiondiagnosisofanimalpathogens |