Cargando…

The Role of Receptor for Advanced Glycation Endproducts (RAGE) in Infection

During evolution, multicellular organisms have developed an impressive arsenal of defense and repair mechanisms to counteract threats such as infection and trauma. Such an inflammatory response begins with the detection of the potential life-threatening event by recognizing so-called danger signals....

Descripción completa

Detalles Bibliográficos
Autores principales: van Zoelen, M. A. D., Achouiti, A., van der Poll, T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122294/
http://dx.doi.org/10.1007/978-3-642-18081-1_1
Descripción
Sumario:During evolution, multicellular organisms have developed an impressive arsenal of defense and repair mechanisms to counteract threats such as infection and trauma. Such an inflammatory response begins with the detection of the potential life-threatening event by recognizing so-called danger signals. These signal molecules have been classically divided into: i) Exogenous, pathogen-associated molecular patterns (PAMPs) [1], which are conserved motifs on pathogens that are not found in higher eukaryocytes; and ii) endogenous innate danger molecules, also named damage-associated molecular patterns (DAMPs) or alarmins, which are structurally diverse proteins rapidly released by the host itself during infection or (sterile) tissue damage [2].