Cargando…
Rule Generation Using NN and GA for SARS-CoV Cleavage Site Prediction
Cleavage site prediction is an important issue in molecular biology. We present a new method that generates prediction rules for SARS-CoV protease cleavage sites. Our method includes rule extraction from a trained neural network and then enhancing the extracted rules by genetic evolution to improve...
Autores principales: | Cho, Yeon-Jin, Kim, Hyeoncheol |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2005
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122303/ http://dx.doi.org/10.1007/11553939_111 |
Ejemplares similares
-
Cleavage Site Analysis Using Rule Extraction from Neural Networks
por: Cho, Yeun-Jin, et al.
Publicado: (2005) -
SARS-CoV-2 furin cleavage site was not engineered
por: Garry, Robert F.
Publicado: (2022) -
Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis
por: Johnson, Bryan A., et al.
Publicado: (2020) -
The Emergence of the Spike Furin Cleavage Site in SARS-CoV-2
por: Chan, Yujia Alina, et al.
Publicado: (2021) -
SARS-CoV-2 spike and its adaptable furin cleavage site
por: Whittaker, Gary R
Publicado: (2021)