Cargando…
Genomics, Other “Omic” Technologies, Personalized Medicine, and Additional Biotechnology-Related Techniques
The products resulting for biotechnologies continue to grow at an exponential rate, and the expectations are that an even greater percentage of drug development will be in the area of the biologics. In 2011, worldwide there were over 800 new biotech drugs and treatments in development including 23 a...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122419/ http://dx.doi.org/10.1007/978-1-4614-6486-0_8 |
Sumario: | The products resulting for biotechnologies continue to grow at an exponential rate, and the expectations are that an even greater percentage of drug development will be in the area of the biologics. In 2011, worldwide there were over 800 new biotech drugs and treatments in development including 23 antisense, 64 cell therapy, 50 gene therapy, 300 monoclonal antibodies, 78 recombinant proteins, and 298 vaccines (PhRMA 2012). Pharmaceutical biotechnology techniques are at the core of most methodologies used today for drug discovery and development of both biologics and small molecules. While recombinant DNA technology and hybridoma techniques were the major methods utilized in pharmaceutical biotechnology through most of its historical timeline, our ever-widening understanding of human cellular function and disease processes and a wealth of additional and innovative biotechnologies have been, and will continue to be, developed in order to harvest the information found in the human genome. These technological advances will provide a better understanding of the relationship between genetics and biological function, unravel the underlying causes of disease, explore the association of genomic variation and drug response, enhance pharmaceutical research, and fuel the discovery and development of new and novel biopharmaceuticals. These revolutionary technologies and additional biotechnology-related techniques are improving the very competitive and costly process of drug development of new medicinal agents, diagnostics, and medical devices. Some of the technologies and techniques described in this chapter are both well established and commonly used applications of biotechnology producing potential therapeutic products now in development including clinical trials. New techniques are emerging at a rapid and unprecedented pace and their full impact on the future of molecular medicine has yet to be imagined. |
---|