Cargando…
Coronavirus Genome Replication
Viruses belonging to the family Coronaviridae are unique among RNA viruses because of the unusually large size of their genome, which is of messenger- or positive- or plus-sense. It is ∼30,000 bases or 2–3 times larger than the genomes of most other RNA viruses. Coronaviruses belong to the order Nid...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122471/ http://dx.doi.org/10.1007/b135974_2 |
_version_ | 1783515424884785152 |
---|---|
author | Sawicki, Stanley G. |
author_facet | Sawicki, Stanley G. |
author_sort | Sawicki, Stanley G. |
collection | PubMed |
description | Viruses belonging to the family Coronaviridae are unique among RNA viruses because of the unusually large size of their genome, which is of messenger- or positive- or plus-sense. It is ∼30,000 bases or 2–3 times larger than the genomes of most other RNA viruses. Coronaviruses belong to the order Nidovirales, the other three families being the Arteriviridae, Toroviridae and Roniviridae. (For a review of classification and evolutionary relatedness of Nidovirales see Gorbalenya et al. 2006.) This grouping is based on the arrangement and relatedness of open reading frames within their genomes and on the presence in infected cells of multiple subgenomic mRNAs that form a 3'-co-terminal, nested set with the genome. Among the Nidovirales, coronaviruses (and toroviruses) are unique in their possession of a helical nucleocapsid, which is unusual for plus-stranded but not minus-stranded RNA viruses; plus-stranded RNA-containing plant viruses in the Closteroviridae and in the Tobamovirus genus also possess helical capsids. Coronaviruses are very successful and have infected many species of animals, including bats, birds (poultry) and mammals, such as humans and livestock. Coronavirus species are classified into three groups, which were based originally on cross-reacting antibodies and more recently on nucleotide sequence relatedness (Gonzalez et al. 2003). There have been several reviews of coronaviruses published recently and the reader is referred to them for more extensive references (Enjuanes et al. 2006; Masters 2006; Pasternak et al. 2006; Sawicki and Sawicki 2005; Sawicki et al. 2007; Ziebuhr 2005). |
format | Online Article Text |
id | pubmed-7122471 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2008 |
record_format | MEDLINE/PubMed |
spelling | pubmed-71224712020-04-06 Coronavirus Genome Replication Sawicki, Stanley G. Viral Genome Replication Article Viruses belonging to the family Coronaviridae are unique among RNA viruses because of the unusually large size of their genome, which is of messenger- or positive- or plus-sense. It is ∼30,000 bases or 2–3 times larger than the genomes of most other RNA viruses. Coronaviruses belong to the order Nidovirales, the other three families being the Arteriviridae, Toroviridae and Roniviridae. (For a review of classification and evolutionary relatedness of Nidovirales see Gorbalenya et al. 2006.) This grouping is based on the arrangement and relatedness of open reading frames within their genomes and on the presence in infected cells of multiple subgenomic mRNAs that form a 3'-co-terminal, nested set with the genome. Among the Nidovirales, coronaviruses (and toroviruses) are unique in their possession of a helical nucleocapsid, which is unusual for plus-stranded but not minus-stranded RNA viruses; plus-stranded RNA-containing plant viruses in the Closteroviridae and in the Tobamovirus genus also possess helical capsids. Coronaviruses are very successful and have infected many species of animals, including bats, birds (poultry) and mammals, such as humans and livestock. Coronavirus species are classified into three groups, which were based originally on cross-reacting antibodies and more recently on nucleotide sequence relatedness (Gonzalez et al. 2003). There have been several reviews of coronaviruses published recently and the reader is referred to them for more extensive references (Enjuanes et al. 2006; Masters 2006; Pasternak et al. 2006; Sawicki and Sawicki 2005; Sawicki et al. 2007; Ziebuhr 2005). 2008-11-01 /pmc/articles/PMC7122471/ http://dx.doi.org/10.1007/b135974_2 Text en © Springer Science+Business Media, LLC 2009 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Article Sawicki, Stanley G. Coronavirus Genome Replication |
title | Coronavirus Genome Replication |
title_full | Coronavirus Genome Replication |
title_fullStr | Coronavirus Genome Replication |
title_full_unstemmed | Coronavirus Genome Replication |
title_short | Coronavirus Genome Replication |
title_sort | coronavirus genome replication |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122471/ http://dx.doi.org/10.1007/b135974_2 |
work_keys_str_mv | AT sawickistanleyg coronavirusgenomereplication |