Cargando…
The Role of Nuclear Matrix Attachment Regions in Plants
Regions of DNA that bind to the nuclear matrix, or nucleoskeleton, are known as Matrix Attachment Regions (MARs). MARs are thought to play an important role in higher-order structure and chromatin organization within the nucleus. MARs are also thought to act as boundaries of chromosomal domains that...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2009
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122480/ http://dx.doi.org/10.1007/978-3-540-71058-5_6 |
Sumario: | Regions of DNA that bind to the nuclear matrix, or nucleoskeleton, are known as Matrix Attachment Regions (MARs). MARs are thought to play an important role in higher-order structure and chromatin organization within the nucleus. MARs are also thought to act as boundaries of chromosomal domains that act to separate regions of gene-rich, decondensed euchromatin from highly repetitive, condensed heterochromatin. Herein I will present evidence that MARs do indeed act as domain boundaries and can prevent the spread of silencing into active genes. Many fundamental questions remain unanswered about how MARs function in the nucleus. New findings in epigenetics indicate that MARs may also play an important role in the organization of genes and the eventual transport of their mRNAs through the nuclear pore. |
---|