Cargando…
Non-poisson Processes of Email Virus Propagation
Email viruses are one of the main security problems in the Internet. In order to stop a computer virus outbreak, we need to understand email interactions between individuals. Most of the spreading models assume that users interact uniformly in time following a Poisson process, but recent measurement...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7122840/ http://dx.doi.org/10.1007/978-3-642-10781-8_20 |
Sumario: | Email viruses are one of the main security problems in the Internet. In order to stop a computer virus outbreak, we need to understand email interactions between individuals. Most of the spreading models assume that users interact uniformly in time following a Poisson process, but recent measurements have shown that the intercontact time follows heavy-tailed distribution. The non-Poisson nature of contact dynamics results in prevalence decay times significantly larger than predicted by standard Poisson process based models. Email viruses spread over a logical network defined by email address books. The topology of this network plays important role in the spreading dynamics. Recent observations suggest that node degrees in email networks are heavy-tailed distributed and can be modeled as power law network. We propose an email virus propagation model that considers both heavy-tailed intercontact time distribution, and heavy-tailed topology of email networks. |
---|