Cargando…
Improved Prediction of MHC Class I Binders/Non-Binders Peptides Through Artificial Neural Network Using Variable Learning Rate: SARS Corona Virus, a Case Study
Fundamental step of an adaptive immune response to pathogen or vaccine is the binding of short peptides (also called epitopes) to major histocompatibility complex (MHC) molecules. The various prediction algorithms are being used to capture the MHC peptide binding preference, allowing the rapid scan...
Autores principales: | Soam, Sudhir Singh, Bhasker, Bharat, Mishra, Bhartendu Nath |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2010
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7123181/ https://www.ncbi.nlm.nih.gov/pubmed/21431562 http://dx.doi.org/10.1007/978-1-4419-7046-6_22 |
Ejemplares similares
-
Prediction of MHC class I binding peptides using probability distribution functions
por: Soam, Sudhir Singh, et al.
Publicado: (2009) -
Prediction of MHC binding peptide using Gibbs motif sampler, weight matrix and artificial neural network
por: Singh, Satarudra Prakash, et al.
Publicado: (2008) -
Designing of interferon-gamma inducing MHC class-II binders
por: Dhanda, Sandeep Kumar, et al.
Publicado: (2013) -
Ranking of binding and nonbinding peptides to MHC class I molecules using inverse folding approach: Implications for vaccine design
por: Singh, Satarudra Prakash, et al.
Publicado: (2008) -
Impact of Structural Observables From Simulations to Predict the Effect of Single-Point Mutations in MHC Class II Peptide Binders
por: Ochoa, Rodrigo, et al.
Publicado: (2021)