Cargando…

Networks and Models with Heterogeneous Population Structure in Epidemiology

Heterogeneous population structure can have a profound effect on infectious disease dynamics, and is particularly important when investigating “tactical” disease control questions. At times, the nature of the network involved in the transmission of the pathogen (bacteria, virus, macro-parasite, etc....

Descripción completa

Detalles Bibliográficos
Autor principal: Kao, R. R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7123232/
http://dx.doi.org/10.1007/978-1-84996-396-1_4
Descripción
Sumario:Heterogeneous population structure can have a profound effect on infectious disease dynamics, and is particularly important when investigating “tactical” disease control questions. At times, the nature of the network involved in the transmission of the pathogen (bacteria, virus, macro-parasite, etc.) appears to be clear; however, the nature of the network involved is dependent on the scale (e.g. within-host, between-host, or between-population), the nature of the contact, which ranges from the highly specific (e.g. sexual acts or needle sharing at the person-to-person level) to almost completely non-specific (e.g. aerosol transmission, often over long distances as can occur with the highly infectious livestock pathogen foot-and-mouth disease virus—FMDv—at the farm-to-farm level, e.g. Schley et al. in J. R. Soc. Interface 6:455–462, 2008), and the timescale of interest (e.g. at the scale of the individual, the typical infectious period of the host). Theoretical approaches to examining the implications of particular network structures on disease transmission have provided critical insight; however, a greater challenge is the integration of network approaches with data on real population structures. In this chapter, some concepts in disease modelling will be introduced, the relevance of selected network phenomena discussed, and then results from real data and their relationship to network analyses summarised. These include examinations of the patterns of air traffic and its relation to the spread of SARS in 2003 (Colizza et al. in BMC Med., 2007; Hufnagel et al. in Proc. Natl. Acad. Sci. USA 101:15124–15129, 2004), the use of the extensively documented Great Britain livestock movements network (Green et al. in J. Theor. Biol. 239:289–297, 2008; Robinson et al. in J. R. Soc. Interface 4:669–674, 2007; Vernon and Keeling in Proc. R. Soc. Lond. B, Biol. Sci. 276:469–476, 2009) and the growing interest in combining contact structure data with phylogenetics to identify real contact patterns as they directly relate to diseases of interest (Cottam et al. in PLoS Pathogens 4:1000050, 2007; Hughes et al. in PLoS Pathogens 5:1000590, 2009).