Cargando…
Applications of Microbial Biopolymers in Display Technology
Microorganisms produce a variety of different polymers such as polyamides, polysaccharides, and polyesters. The polyesters, the polyhydroxyalkanoates (PHAs), are the most extensively studied polymers in regard to their use in display technology. The material properties of bacterial PHAs in combinati...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7123360/ http://dx.doi.org/10.1007/978-3-319-50436-0_377 |
Sumario: | Microorganisms produce a variety of different polymers such as polyamides, polysaccharides, and polyesters. The polyesters, the polyhydroxyalkanoates (PHAs), are the most extensively studied polymers in regard to their use in display technology. The material properties of bacterial PHAs in combination with their biocompatibility and biodegradability make them attractive substrates for use in display technology applications. By translationally fusing bioactive molecules to a gene encoding a PHA-binding domain, the appropriate functionalization for a given application can be achieved such that the need for chemical immobilization is circumvented. By separately extracting and processing the biopolymer, using it to coat a surface, and then treating this surface with the fusion proteins, surface functionalization for immunodiagnostic microarray or tissue engineering applications can be accomplished. Conversely, by expressing the fusion protein directly in the PHA-producing organisms, one-step production of functionalized beads can be achieved. Such beads have been demonstrated in diverse applications, including fluorescence-activated cell sorting, enzyme-linked immunosorbent assays, microarrays, diagnostic skin test for tuberculosis, vaccines, protein purification, and affinity bioseparation. |
---|