Cargando…

Targeted Delivery of Surface-Modified Nanoparticles: Modulation of Inflammation for Acute Lung Injury

Nanocarriers have been widely employed in the diagnosis and treatment of various diseases. The drug release kinetics and pharmacodynamics could be adjusted by changing the materials, designs, and physicochemical properties of the carriers. Furthermore, the carrier surface could be modified to minimi...

Descripción completa

Detalles Bibliográficos
Autor principal: Nguyen, Hiep X.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7123653/
http://dx.doi.org/10.1007/978-3-030-06115-9_17
Descripción
Sumario:Nanocarriers have been widely employed in the diagnosis and treatment of various diseases. The drug release kinetics and pharmacodynamics could be adjusted by changing the materials, designs, and physicochemical properties of the carriers. Furthermore, the carrier surface could be modified to minimize the particle clearance, increase the circulation duration, escape the biological protective mechanisms, penetrate through physical barriers, and prolong the residence of the drug at the target site. Among lung diseases, acute lung injury has been considered life-threatening with approximately 190,000 cases and 74,500 deaths per year in the USA. Numerous researches have reported the efficacy of drug-encapsulated nanoparticles in the treatment of acute lung injury. The use of nanoparticles could help minimize the effect of airway defenses in the lung, thus provides a prolonged retention, sustained drug release, and targeted delivery to the lung tissues. Meanwhile, the toxicity of nanoparticles in the lungs needs to be investigated thoroughly to alleviate the safety concerns. In this chapter, we discuss the targeted pulmonary delivery of surface-modified nanocarriers to efficiently treat acute lung injury.