Cargando…

Genus Avipoxvirus

Poxviruses identified in skin lesions of domestic, pet or wild birds are assigned largely by default to the Avipoxvirus genus within the subfamily Chordopoxvirinae of the family Poxviridae. Avipoxviruses have been identified as the causative agent of disease in at least 232 species in 23 orders of b...

Descripción completa

Detalles Bibliográficos
Autor principal: Boyle, David B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2007
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7123973/
http://dx.doi.org/10.1007/978-3-7643-7557-7_11
Descripción
Sumario:Poxviruses identified in skin lesions of domestic, pet or wild birds are assigned largely by default to the Avipoxvirus genus within the subfamily Chordopoxvirinae of the family Poxviridae. Avipoxviruses have been identified as the causative agent of disease in at least 232 species in 23 orders of birds. Vaccines based upon attenuated avipoxvirus strains provide good disease control in production poultry, although with the large and intensive production systems there are suggestions and real risks of emergence of strains against which current vaccines might be ineffective. Sequence analysis of the whole genome has revealed overall genome structure and function resemblance to the Chordopoxvirinae; however, avipoxvirus genomes exhibit large-scale genomic rearrangements with more extensive gene families and novel host range gene in comparison with the other Chordopoxvirinae. Phylogenetic analysis places the avipoxviruses externally to the Chorodopoxvirinae to such an extent that in the future it might be appropriate to consider the Avipoxviruses as a separate subfamily within the Poxviridae. A unique relationship exists between Fowlpox virus (FWPV) and reticuloendothelosis viruses. All FWPV strains carry a remnant long terminal repeat, while field strains carry a near full-length provirus integrated at the same location in the FWPV genome. With the development of techniques to construct poxviruses expressing foreign vaccine antigens, the avipoxviruses have gone from neglected obscurity to important vaccine vectors in the past 20 years. The seminal observation of their utility for delivery of vaccine antigens to non-avian species has driven much of the interest in this group of viruses. In the veterinary area, several recombinant avipoxviruses are commercially licensed vaccines. The most successful have been those expressing glycoprotein antigens of enveloped viruses, e.g. avian influenza, Newcastle diseases and West Nile viruses. Several recombinants have undergone extensive human clinical trials as experimental vaccines against HIV/AIDS and malaria or as treatment regimens in cancer patients. The safety profile of avipoxvirus recombinants for use as veterinary and human vaccines or therapeutics is now well established.