Cargando…

Applications of Loop-Mediated Isothermal Amplificaton Methods (LAMP) for Identification and Diagnosis of Mycotic Diseases: Paracoccidioidomycosis and Ochroconis gallopava infection

Loop-mediated isothermal amplification (LAMP) methods are now useful for the detection of a specific gene in infectious diseases, genetic diseases, and/or genetic disorders in the large number of medical fields, and it was recently introduced to fungal investigation. It is characterized by the use o...

Descripción completa

Detalles Bibliográficos
Autores principales: Sano, Ayako, Itano, Eiko Nakagawa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2009
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124037/
http://dx.doi.org/10.1007/978-3-642-05042-8_18
_version_ 1783515768039669760
author Sano, Ayako
Itano, Eiko Nakagawa
author_facet Sano, Ayako
Itano, Eiko Nakagawa
author_sort Sano, Ayako
collection PubMed
description Loop-mediated isothermal amplification (LAMP) methods are now useful for the detection of a specific gene in infectious diseases, genetic diseases, and/or genetic disorders in the large number of medical fields, and it was recently introduced to fungal investigation. It is characterized by the use of four different primers specifically designed to recognize six distinct regions of the target gene, and the reaction process proceeds at a constant temperature using strand displacement reaction. Quickness and simplicity is the advantage of the method. Amplification and detection of gene can be completed in a single step, by incubating the mixture of samples, primers, DNA polymerase with strand displacement activity and substrates at a constant temperature. The method was applied to two fungal infections; paracoccidioidomycosis (PCM), a deep mycosis caused by Paracoccidioides brasiliensis and Ochroconis gallopava infection. For PCM a combination of F3, B3, FIP, and BIP primers designed from the partial sequence of P. brasiliensis gp43 gene was used. The PCR products amplified by the primer set; F3 and B3 showed species specificity for P. brasiliensis and the detection limit of the PCR was 100 fg of fungal genomic DNA. The specific DNA banding pattern of P. brasiliensis was detected in the clinical and nine-banded armadillo derived isolates, paraffin-embedded tissue sample or sputum from PCM patient. LAMP method was used also for the identification of O. gallopava by using species-specific primer sets based on the D1/D2 domain of the LSU rDNA sequence. The method successfully detected the gene from both fungal DNA derived from brains and spleens of experimentally-infected mice with O. gallopava and environmental isolates. In conclusion, LAMP method for PCM and O. gallopava seemed to be useful for identification, diagnosis or retrospective study with advantage in the quickness and simplicity procedure, but require strictly-controlled environments.
format Online
Article
Text
id pubmed-7124037
institution National Center for Biotechnology Information
language English
publishDate 2009
record_format MEDLINE/PubMed
spelling pubmed-71240372020-04-06 Applications of Loop-Mediated Isothermal Amplificaton Methods (LAMP) for Identification and Diagnosis of Mycotic Diseases: Paracoccidioidomycosis and Ochroconis gallopava infection Sano, Ayako Itano, Eiko Nakagawa Molecular Identification of Fungi Article Loop-mediated isothermal amplification (LAMP) methods are now useful for the detection of a specific gene in infectious diseases, genetic diseases, and/or genetic disorders in the large number of medical fields, and it was recently introduced to fungal investigation. It is characterized by the use of four different primers specifically designed to recognize six distinct regions of the target gene, and the reaction process proceeds at a constant temperature using strand displacement reaction. Quickness and simplicity is the advantage of the method. Amplification and detection of gene can be completed in a single step, by incubating the mixture of samples, primers, DNA polymerase with strand displacement activity and substrates at a constant temperature. The method was applied to two fungal infections; paracoccidioidomycosis (PCM), a deep mycosis caused by Paracoccidioides brasiliensis and Ochroconis gallopava infection. For PCM a combination of F3, B3, FIP, and BIP primers designed from the partial sequence of P. brasiliensis gp43 gene was used. The PCR products amplified by the primer set; F3 and B3 showed species specificity for P. brasiliensis and the detection limit of the PCR was 100 fg of fungal genomic DNA. The specific DNA banding pattern of P. brasiliensis was detected in the clinical and nine-banded armadillo derived isolates, paraffin-embedded tissue sample or sputum from PCM patient. LAMP method was used also for the identification of O. gallopava by using species-specific primer sets based on the D1/D2 domain of the LSU rDNA sequence. The method successfully detected the gene from both fungal DNA derived from brains and spleens of experimentally-infected mice with O. gallopava and environmental isolates. In conclusion, LAMP method for PCM and O. gallopava seemed to be useful for identification, diagnosis or retrospective study with advantage in the quickness and simplicity procedure, but require strictly-controlled environments. 2009-10-08 /pmc/articles/PMC7124037/ http://dx.doi.org/10.1007/978-3-642-05042-8_18 Text en © Springer-Verlag Berlin Heidelberg 2010 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Article
Sano, Ayako
Itano, Eiko Nakagawa
Applications of Loop-Mediated Isothermal Amplificaton Methods (LAMP) for Identification and Diagnosis of Mycotic Diseases: Paracoccidioidomycosis and Ochroconis gallopava infection
title Applications of Loop-Mediated Isothermal Amplificaton Methods (LAMP) for Identification and Diagnosis of Mycotic Diseases: Paracoccidioidomycosis and Ochroconis gallopava infection
title_full Applications of Loop-Mediated Isothermal Amplificaton Methods (LAMP) for Identification and Diagnosis of Mycotic Diseases: Paracoccidioidomycosis and Ochroconis gallopava infection
title_fullStr Applications of Loop-Mediated Isothermal Amplificaton Methods (LAMP) for Identification and Diagnosis of Mycotic Diseases: Paracoccidioidomycosis and Ochroconis gallopava infection
title_full_unstemmed Applications of Loop-Mediated Isothermal Amplificaton Methods (LAMP) for Identification and Diagnosis of Mycotic Diseases: Paracoccidioidomycosis and Ochroconis gallopava infection
title_short Applications of Loop-Mediated Isothermal Amplificaton Methods (LAMP) for Identification and Diagnosis of Mycotic Diseases: Paracoccidioidomycosis and Ochroconis gallopava infection
title_sort applications of loop-mediated isothermal amplificaton methods (lamp) for identification and diagnosis of mycotic diseases: paracoccidioidomycosis and ochroconis gallopava infection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124037/
http://dx.doi.org/10.1007/978-3-642-05042-8_18
work_keys_str_mv AT sanoayako applicationsofloopmediatedisothermalamplificatonmethodslampforidentificationanddiagnosisofmycoticdiseasesparacoccidioidomycosisandochroconisgallopavainfection
AT itanoeikonakagawa applicationsofloopmediatedisothermalamplificatonmethodslampforidentificationanddiagnosisofmycoticdiseasesparacoccidioidomycosisandochroconisgallopavainfection