Cargando…

“Skin-like” fabric for personal moisture management

Personal moisture management fabrics that facilitate sweat transport away from the skin are highly desirable for wearer’s comfort and performance. Here, we demonstrate a “skin-like” directional liquid transport fabric, which enables continuous one-way liquid flow through spatially distributed channe...

Descripción completa

Detalles Bibliográficos
Autores principales: Lao, L., Shou, D., Wu, Y. S., Fan, J. T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124935/
https://www.ncbi.nlm.nih.gov/pubmed/32284976
http://dx.doi.org/10.1126/sciadv.aaz0013
Descripción
Sumario:Personal moisture management fabrics that facilitate sweat transport away from the skin are highly desirable for wearer’s comfort and performance. Here, we demonstrate a “skin-like” directional liquid transport fabric, which enables continuous one-way liquid flow through spatially distributed channels acting like “sweating glands” yet repels external liquid contaminants. The water transmission rate can be 15 times greater than that of best commercial breathable fabrics. This exceptional property is achieved by creating gradient wettability channels across a predominantly superhydrophobic substrate. The flow directionality is explained by the Gibbs pinning criterion. The permeability, mechanical property, and abrasion resistance (up to 10,000 cycles) of the fabric were not affected by the treatment. In addition to functional clothing, this concept can be extended for developing materials for oil-water separation, wound dressing, geotechnical engineering, flexible microfluidics, and fuel cell membranes.