Cargando…

Vaporizable endoskeletal droplets via tunable interfacial melting transitions

Liquid emulsion droplet evaporation is of importance for various sensing and imaging applications. The liquid-to-gas phase transformation is typically triggered thermally or acoustically by low–boiling point liquids, or by inclusion of solid structures that pin the vapor/liquid contact line to facil...

Descripción completa

Detalles Bibliográficos
Autores principales: Shakya, Gazendra, Hoff, Samuel E., Wang, Shiyi, Heinz, Hendrik, Ding, Xiaoyun, Borden, Mark A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124936/
https://www.ncbi.nlm.nih.gov/pubmed/32284985
http://dx.doi.org/10.1126/sciadv.aaz7188
_version_ 1783515857095229440
author Shakya, Gazendra
Hoff, Samuel E.
Wang, Shiyi
Heinz, Hendrik
Ding, Xiaoyun
Borden, Mark A.
author_facet Shakya, Gazendra
Hoff, Samuel E.
Wang, Shiyi
Heinz, Hendrik
Ding, Xiaoyun
Borden, Mark A.
author_sort Shakya, Gazendra
collection PubMed
description Liquid emulsion droplet evaporation is of importance for various sensing and imaging applications. The liquid-to-gas phase transformation is typically triggered thermally or acoustically by low–boiling point liquids, or by inclusion of solid structures that pin the vapor/liquid contact line to facilitate heterogeneous nucleation. However, these approaches lack precise tunability in vaporization behavior. Here, we describe a previously unused approach to control vaporization behavior through an endoskeleton that can melt and blend into the liquid core to either enhance or disrupt cohesive intermolecular forces. This effect is demonstrated using perfluoropentane (C(5)F(12)) droplets encapsulating a fluorocarbon (FC) or hydrocarbon (HC) endoskeleton. FC skeletons inhibit vaporization, whereas HC skeletons trigger vaporization near the rotator melting transition. Our findings highlight the importance of skeletal interfacial mixing for initiating droplet vaporization. Tuning molecular interactions between the endoskeleton and droplet phase is generalizable for achieving emulsion or other secondary phase transitions, in emulsions.
format Online
Article
Text
id pubmed-7124936
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-71249362020-04-13 Vaporizable endoskeletal droplets via tunable interfacial melting transitions Shakya, Gazendra Hoff, Samuel E. Wang, Shiyi Heinz, Hendrik Ding, Xiaoyun Borden, Mark A. Sci Adv Research Articles Liquid emulsion droplet evaporation is of importance for various sensing and imaging applications. The liquid-to-gas phase transformation is typically triggered thermally or acoustically by low–boiling point liquids, or by inclusion of solid structures that pin the vapor/liquid contact line to facilitate heterogeneous nucleation. However, these approaches lack precise tunability in vaporization behavior. Here, we describe a previously unused approach to control vaporization behavior through an endoskeleton that can melt and blend into the liquid core to either enhance or disrupt cohesive intermolecular forces. This effect is demonstrated using perfluoropentane (C(5)F(12)) droplets encapsulating a fluorocarbon (FC) or hydrocarbon (HC) endoskeleton. FC skeletons inhibit vaporization, whereas HC skeletons trigger vaporization near the rotator melting transition. Our findings highlight the importance of skeletal interfacial mixing for initiating droplet vaporization. Tuning molecular interactions between the endoskeleton and droplet phase is generalizable for achieving emulsion or other secondary phase transitions, in emulsions. American Association for the Advancement of Science 2020-04-03 /pmc/articles/PMC7124936/ /pubmed/32284985 http://dx.doi.org/10.1126/sciadv.aaz7188 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Shakya, Gazendra
Hoff, Samuel E.
Wang, Shiyi
Heinz, Hendrik
Ding, Xiaoyun
Borden, Mark A.
Vaporizable endoskeletal droplets via tunable interfacial melting transitions
title Vaporizable endoskeletal droplets via tunable interfacial melting transitions
title_full Vaporizable endoskeletal droplets via tunable interfacial melting transitions
title_fullStr Vaporizable endoskeletal droplets via tunable interfacial melting transitions
title_full_unstemmed Vaporizable endoskeletal droplets via tunable interfacial melting transitions
title_short Vaporizable endoskeletal droplets via tunable interfacial melting transitions
title_sort vaporizable endoskeletal droplets via tunable interfacial melting transitions
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124936/
https://www.ncbi.nlm.nih.gov/pubmed/32284985
http://dx.doi.org/10.1126/sciadv.aaz7188
work_keys_str_mv AT shakyagazendra vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions
AT hoffsamuele vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions
AT wangshiyi vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions
AT heinzhendrik vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions
AT dingxiaoyun vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions
AT bordenmarka vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions