Cargando…
Vaporizable endoskeletal droplets via tunable interfacial melting transitions
Liquid emulsion droplet evaporation is of importance for various sensing and imaging applications. The liquid-to-gas phase transformation is typically triggered thermally or acoustically by low–boiling point liquids, or by inclusion of solid structures that pin the vapor/liquid contact line to facil...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124936/ https://www.ncbi.nlm.nih.gov/pubmed/32284985 http://dx.doi.org/10.1126/sciadv.aaz7188 |
_version_ | 1783515857095229440 |
---|---|
author | Shakya, Gazendra Hoff, Samuel E. Wang, Shiyi Heinz, Hendrik Ding, Xiaoyun Borden, Mark A. |
author_facet | Shakya, Gazendra Hoff, Samuel E. Wang, Shiyi Heinz, Hendrik Ding, Xiaoyun Borden, Mark A. |
author_sort | Shakya, Gazendra |
collection | PubMed |
description | Liquid emulsion droplet evaporation is of importance for various sensing and imaging applications. The liquid-to-gas phase transformation is typically triggered thermally or acoustically by low–boiling point liquids, or by inclusion of solid structures that pin the vapor/liquid contact line to facilitate heterogeneous nucleation. However, these approaches lack precise tunability in vaporization behavior. Here, we describe a previously unused approach to control vaporization behavior through an endoskeleton that can melt and blend into the liquid core to either enhance or disrupt cohesive intermolecular forces. This effect is demonstrated using perfluoropentane (C(5)F(12)) droplets encapsulating a fluorocarbon (FC) or hydrocarbon (HC) endoskeleton. FC skeletons inhibit vaporization, whereas HC skeletons trigger vaporization near the rotator melting transition. Our findings highlight the importance of skeletal interfacial mixing for initiating droplet vaporization. Tuning molecular interactions between the endoskeleton and droplet phase is generalizable for achieving emulsion or other secondary phase transitions, in emulsions. |
format | Online Article Text |
id | pubmed-7124936 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-71249362020-04-13 Vaporizable endoskeletal droplets via tunable interfacial melting transitions Shakya, Gazendra Hoff, Samuel E. Wang, Shiyi Heinz, Hendrik Ding, Xiaoyun Borden, Mark A. Sci Adv Research Articles Liquid emulsion droplet evaporation is of importance for various sensing and imaging applications. The liquid-to-gas phase transformation is typically triggered thermally or acoustically by low–boiling point liquids, or by inclusion of solid structures that pin the vapor/liquid contact line to facilitate heterogeneous nucleation. However, these approaches lack precise tunability in vaporization behavior. Here, we describe a previously unused approach to control vaporization behavior through an endoskeleton that can melt and blend into the liquid core to either enhance or disrupt cohesive intermolecular forces. This effect is demonstrated using perfluoropentane (C(5)F(12)) droplets encapsulating a fluorocarbon (FC) or hydrocarbon (HC) endoskeleton. FC skeletons inhibit vaporization, whereas HC skeletons trigger vaporization near the rotator melting transition. Our findings highlight the importance of skeletal interfacial mixing for initiating droplet vaporization. Tuning molecular interactions between the endoskeleton and droplet phase is generalizable for achieving emulsion or other secondary phase transitions, in emulsions. American Association for the Advancement of Science 2020-04-03 /pmc/articles/PMC7124936/ /pubmed/32284985 http://dx.doi.org/10.1126/sciadv.aaz7188 Text en Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Shakya, Gazendra Hoff, Samuel E. Wang, Shiyi Heinz, Hendrik Ding, Xiaoyun Borden, Mark A. Vaporizable endoskeletal droplets via tunable interfacial melting transitions |
title | Vaporizable endoskeletal droplets via tunable interfacial melting transitions |
title_full | Vaporizable endoskeletal droplets via tunable interfacial melting transitions |
title_fullStr | Vaporizable endoskeletal droplets via tunable interfacial melting transitions |
title_full_unstemmed | Vaporizable endoskeletal droplets via tunable interfacial melting transitions |
title_short | Vaporizable endoskeletal droplets via tunable interfacial melting transitions |
title_sort | vaporizable endoskeletal droplets via tunable interfacial melting transitions |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124936/ https://www.ncbi.nlm.nih.gov/pubmed/32284985 http://dx.doi.org/10.1126/sciadv.aaz7188 |
work_keys_str_mv | AT shakyagazendra vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions AT hoffsamuele vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions AT wangshiyi vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions AT heinzhendrik vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions AT dingxiaoyun vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions AT bordenmarka vaporizableendoskeletaldropletsviatunableinterfacialmeltingtransitions |