Cargando…
Massive generation of metastable bulk nanobubbles in water by external electric fields
Nanobubbles (NBs) are nanoscopic gaseous domains than can exist on solid surfaces or in bulk liquids. They have attracted substantial attention due to their long-time (meta)stability and a high potential for real-world applications. Using an approach not previously investigated, we exploit surface-e...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7124953/ https://www.ncbi.nlm.nih.gov/pubmed/32284977 http://dx.doi.org/10.1126/sciadv.aaz0094 |
Sumario: | Nanobubbles (NBs) are nanoscopic gaseous domains than can exist on solid surfaces or in bulk liquids. They have attracted substantial attention due to their long-time (meta)stability and a high potential for real-world applications. Using an approach not previously investigated, we exploit surface-electrostatic NB formation and stabilization via application of external electric fields in gas-liquid systems, with the marked result of massively increased gas uptake into the liquid in NB form. The de facto gas solubility enhancement (over many months) ranges from 2.5-fold for oxygen to 30-fold for methane vis-à-vis respective Henry’s law values for gas solubility; the more hydrophobic the gas, the more spectacular the increase. Molecular dynamics simulations reveal that the origin of NBs’ movement lies in dielectrophoresis, while substantial NB stabilization arises from a surface-polarization interaction. |
---|