Cargando…
Exploring the configuration spaces of surface materials using time-dependent diffraction patterns and unsupervised learning
Computational methods for exploring the atomic configuration spaces of surface materials will lead to breakthroughs in nanotechnology and beyond. In order to develop such methods, especially ones utilizing machine learning approaches, descriptors which encode the structural features of the candidate...
Autor principal: | Packwood, Daniel M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125295/ https://www.ncbi.nlm.nih.gov/pubmed/32246027 http://dx.doi.org/10.1038/s41598-020-62782-6 |
Ejemplares similares
-
Materials informatics for self-assembly of functionalized organic precursors on metal surfaces
por: Packwood, Daniel M., et al.
Publicado: (2018) -
Patterns and configurations in finite spaces
por: Vajda, Steven
Publicado: (1967) -
Exploring the configurational space of amorphous graphene with machine-learned atomic energies
por: El-Machachi, Zakariya, et al.
Publicado: (2022) -
Unsupervised learning of haptic material properties
por: Metzger, Anna, et al.
Publicado: (2022) -
Unsupervised learning of digit recognition using spike-timing-dependent plasticity
por: Diehl, Peter U., et al.
Publicado: (2015)