Cargando…

Exploring the configuration spaces of surface materials using time-dependent diffraction patterns and unsupervised learning

Computational methods for exploring the atomic configuration spaces of surface materials will lead to breakthroughs in nanotechnology and beyond. In order to develop such methods, especially ones utilizing machine learning approaches, descriptors which encode the structural features of the candidate...

Descripción completa

Detalles Bibliográficos
Autor principal: Packwood, Daniel M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125295/
https://www.ncbi.nlm.nih.gov/pubmed/32246027
http://dx.doi.org/10.1038/s41598-020-62782-6

Ejemplares similares