Cargando…
Virus-like particles—universal molecular toolboxes
Virus-like particles (VLPs) are highly organised spheres that self-assemble from virus-derived structural antigens. These stable and versatile subviral particles possess excellent adjuvant properties capable of inducing innate and cognate immune responses. Commercialised VLP-based vaccines have been...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126091/ https://www.ncbi.nlm.nih.gov/pubmed/18083549 http://dx.doi.org/10.1016/j.copbio.2007.10.013 |
Sumario: | Virus-like particles (VLPs) are highly organised spheres that self-assemble from virus-derived structural antigens. These stable and versatile subviral particles possess excellent adjuvant properties capable of inducing innate and cognate immune responses. Commercialised VLP-based vaccines have been successful in protecting humans from hepatitis B virus (HBV) and human papillomavirus (HPV) infection and are currently explored for their potential to combat other infectious diseases and cancer. Much insight into VLP-mediated immune stimulation and optimised VLP design has been gained from human immunodeficiency virus (HIV)-derived VLPs presenting promising components of current AIDS vaccine approaches. Owing to their unique features, VLPs and virosomes, the in vitro-reconstituted VLP counterparts, have recently gained ground in the field of nanobiotechnology as organic templates for the development of new biomaterials. |
---|