Cargando…

microRNA-204-5p Participates in Atherosclerosis Via Targeting MMP-9

The aim of the present study was to investigate the role and mechanism of microRNA-204-5p (miR-204-5p) in atherosclerosis (AS)-related abnormal human vascular smooth muscle cells (hVSMCs) function. Firstly, we analyzed the expression of miR-204-5p and found that the miR-204-5p expression level was c...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Na, Yuan, Yuliang, Sun, Shipeng, Liu, Guijian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126203/
https://www.ncbi.nlm.nih.gov/pubmed/32266319
http://dx.doi.org/10.1515/med-2020-0034
Descripción
Sumario:The aim of the present study was to investigate the role and mechanism of microRNA-204-5p (miR-204-5p) in atherosclerosis (AS)-related abnormal human vascular smooth muscle cells (hVSMCs) function. Firstly, we analyzed the expression of miR-204-5p and found that the miR-204-5p expression level was clearly downregulated in atherosclerotic plaque tissues and blood samples compared to the normal controls. Then, matrix metallopeptidase-9 (MMP-9) was predicted to be the potential target of miR-204-5p by TargetScan and this prediction was confirmed by luciferase assays. Besides, we observed that miR-204-5p could negatively regulate the expression of MMP-9 in hVSMCs. Subsequently, Thiazolyl Blue Tetrazolium Bromide (MTT) assay, transwell assay and flow cytometry were performed to detect the proliferation, migration and apoptosis of hVSMCs. Down-expression of miR-204-5p led to the promotion of proliferation and migration accompanied with the suppression of apoptosis in hVSMCs, and these effects were reversed by MMP-9-siRNA. In addition, overexpressed miR-204-5p could inhibit hVSMC proliferation and migration and promote the apoptosis of hVSMCs. However, the effects were also abrogated by overexpressed MMP-9. Together, our findings showed that miR-204-5p plays an important role in the growth and migration of hVSMCs by targeting MMP-9, which might be a novel biomarker and promising therapeutic target for AS.