Cargando…

The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study

Aspirin is a common nonsteroidal anti-inflammatory drug used to reduce fever, pain, and inflammation. However, aspirin’s anti-inflammatory properties may also prevent increased levels of blood lactate dehydrogenase, vascular arterial stiffness and oxidative stress induced by high-intensity exercise....

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Sang Ho, Pekas, Elizabeth J., Lee, Seungyong, Headid, Ronald J., Park, Song-Young
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Sciendo 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126265/
https://www.ncbi.nlm.nih.gov/pubmed/32269652
http://dx.doi.org/10.2478/hukin-2019-0101
_version_ 1783516111160999936
author Lee, Sang Ho
Pekas, Elizabeth J.
Lee, Seungyong
Headid, Ronald J.
Park, Song-Young
author_facet Lee, Sang Ho
Pekas, Elizabeth J.
Lee, Seungyong
Headid, Ronald J.
Park, Song-Young
author_sort Lee, Sang Ho
collection PubMed
description Aspirin is a common nonsteroidal anti-inflammatory drug used to reduce fever, pain, and inflammation. However, aspirin’s anti-inflammatory properties may also prevent increased levels of blood lactate dehydrogenase, vascular arterial stiffness and oxidative stress induced by high-intensity exercise. The purpose of this study was to investigate the effects of 4 weeks of aspirin supplementation on lactate dehydrogenase activity, lactate, arterial stiffness, and antioxidant capacity during high-intensity exercise in Taekwondo athletes. Participants were randomly divided into two groups: aspirin supplementation (n = 10) and placebo-control (n = 10). Blood levels of lactate dehydrogenase (LDH) enzyme activity and lactate were assessed to examine muscle damage and carotid-to-radial pulse wave velocity and the augmentation index were measured to examine arterial stiffness. Blood levels of superoxide dismutase, malondialdehyde, and glutathione peroxidase were assessed to determine antioxidant capacity and levels of oxidative stress. There were significant group × time interactions for enzyme activity of LDH (Δ-60 ± 24.36 U/L) and carotid-to-radial pulse wave velocity (Δ-1.33 ± 0.54 m/s), which significantly decreased (p < 0.05) following aspirin supplementation compared to placebo-control. Superoxide dismutase (Δ359 ± 110 U/gHb) and glutathione peroxidase (Δ28.2 ± 10.1 U/gHb) significantly decreased while malondialdehyde (0Δ3.0 ± 0.1 mmol/mL) significantly increased (p < 0.05) in the placebo-control group compared to the supplementation group. However, there were no changes in lactate concentration levels or augmentation index. These results reveal that low-dose aspirin supplementation would be a useful supplementation therapy to prevent high-intensity exercise training-induced increases in oxidative damage, inflammation, skeletal muscle fatigue, and arterial stiffness in elite Taekwondo athletes.
format Online
Article
Text
id pubmed-7126265
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Sciendo
record_format MEDLINE/PubMed
spelling pubmed-71262652020-04-08 The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study Lee, Sang Ho Pekas, Elizabeth J. Lee, Seungyong Headid, Ronald J. Park, Song-Young J Hum Kinet Section II – Exercise Physiology & Sports Medicine Aspirin is a common nonsteroidal anti-inflammatory drug used to reduce fever, pain, and inflammation. However, aspirin’s anti-inflammatory properties may also prevent increased levels of blood lactate dehydrogenase, vascular arterial stiffness and oxidative stress induced by high-intensity exercise. The purpose of this study was to investigate the effects of 4 weeks of aspirin supplementation on lactate dehydrogenase activity, lactate, arterial stiffness, and antioxidant capacity during high-intensity exercise in Taekwondo athletes. Participants were randomly divided into two groups: aspirin supplementation (n = 10) and placebo-control (n = 10). Blood levels of lactate dehydrogenase (LDH) enzyme activity and lactate were assessed to examine muscle damage and carotid-to-radial pulse wave velocity and the augmentation index were measured to examine arterial stiffness. Blood levels of superoxide dismutase, malondialdehyde, and glutathione peroxidase were assessed to determine antioxidant capacity and levels of oxidative stress. There were significant group × time interactions for enzyme activity of LDH (Δ-60 ± 24.36 U/L) and carotid-to-radial pulse wave velocity (Δ-1.33 ± 0.54 m/s), which significantly decreased (p < 0.05) following aspirin supplementation compared to placebo-control. Superoxide dismutase (Δ359 ± 110 U/gHb) and glutathione peroxidase (Δ28.2 ± 10.1 U/gHb) significantly decreased while malondialdehyde (0Δ3.0 ± 0.1 mmol/mL) significantly increased (p < 0.05) in the placebo-control group compared to the supplementation group. However, there were no changes in lactate concentration levels or augmentation index. These results reveal that low-dose aspirin supplementation would be a useful supplementation therapy to prevent high-intensity exercise training-induced increases in oxidative damage, inflammation, skeletal muscle fatigue, and arterial stiffness in elite Taekwondo athletes. Sciendo 2020-03-31 /pmc/articles/PMC7126265/ /pubmed/32269652 http://dx.doi.org/10.2478/hukin-2019-0101 Text en © 2020 Sang Ho Lee, Elizabeth J. Pekas, Seungyong Lee, Ronald J. Headid III, Song-Young Park, published by Sciendo http://creativecommons.org/licenses/by-nc-nd/3.0 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
spellingShingle Section II – Exercise Physiology & Sports Medicine
Lee, Sang Ho
Pekas, Elizabeth J.
Lee, Seungyong
Headid, Ronald J.
Park, Song-Young
The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study
title The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study
title_full The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study
title_fullStr The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study
title_full_unstemmed The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study
title_short The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study
title_sort impact of aspirin intake on lactate dehydrogenase, arterial stiffness, and oxidative stress during high‐intensity exercise: a pilot study
topic Section II – Exercise Physiology & Sports Medicine
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126265/
https://www.ncbi.nlm.nih.gov/pubmed/32269652
http://dx.doi.org/10.2478/hukin-2019-0101
work_keys_str_mv AT leesangho theimpactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy
AT pekaselizabethj theimpactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy
AT leeseungyong theimpactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy
AT headidronaldj theimpactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy
AT parksongyoung theimpactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy
AT leesangho impactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy
AT pekaselizabethj impactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy
AT leeseungyong impactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy
AT headidronaldj impactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy
AT parksongyoung impactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy