Cargando…
The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study
Aspirin is a common nonsteroidal anti-inflammatory drug used to reduce fever, pain, and inflammation. However, aspirin’s anti-inflammatory properties may also prevent increased levels of blood lactate dehydrogenase, vascular arterial stiffness and oxidative stress induced by high-intensity exercise....
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Sciendo
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126265/ https://www.ncbi.nlm.nih.gov/pubmed/32269652 http://dx.doi.org/10.2478/hukin-2019-0101 |
_version_ | 1783516111160999936 |
---|---|
author | Lee, Sang Ho Pekas, Elizabeth J. Lee, Seungyong Headid, Ronald J. Park, Song-Young |
author_facet | Lee, Sang Ho Pekas, Elizabeth J. Lee, Seungyong Headid, Ronald J. Park, Song-Young |
author_sort | Lee, Sang Ho |
collection | PubMed |
description | Aspirin is a common nonsteroidal anti-inflammatory drug used to reduce fever, pain, and inflammation. However, aspirin’s anti-inflammatory properties may also prevent increased levels of blood lactate dehydrogenase, vascular arterial stiffness and oxidative stress induced by high-intensity exercise. The purpose of this study was to investigate the effects of 4 weeks of aspirin supplementation on lactate dehydrogenase activity, lactate, arterial stiffness, and antioxidant capacity during high-intensity exercise in Taekwondo athletes. Participants were randomly divided into two groups: aspirin supplementation (n = 10) and placebo-control (n = 10). Blood levels of lactate dehydrogenase (LDH) enzyme activity and lactate were assessed to examine muscle damage and carotid-to-radial pulse wave velocity and the augmentation index were measured to examine arterial stiffness. Blood levels of superoxide dismutase, malondialdehyde, and glutathione peroxidase were assessed to determine antioxidant capacity and levels of oxidative stress. There were significant group × time interactions for enzyme activity of LDH (Δ-60 ± 24.36 U/L) and carotid-to-radial pulse wave velocity (Δ-1.33 ± 0.54 m/s), which significantly decreased (p < 0.05) following aspirin supplementation compared to placebo-control. Superoxide dismutase (Δ359 ± 110 U/gHb) and glutathione peroxidase (Δ28.2 ± 10.1 U/gHb) significantly decreased while malondialdehyde (0Δ3.0 ± 0.1 mmol/mL) significantly increased (p < 0.05) in the placebo-control group compared to the supplementation group. However, there were no changes in lactate concentration levels or augmentation index. These results reveal that low-dose aspirin supplementation would be a useful supplementation therapy to prevent high-intensity exercise training-induced increases in oxidative damage, inflammation, skeletal muscle fatigue, and arterial stiffness in elite Taekwondo athletes. |
format | Online Article Text |
id | pubmed-7126265 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Sciendo |
record_format | MEDLINE/PubMed |
spelling | pubmed-71262652020-04-08 The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study Lee, Sang Ho Pekas, Elizabeth J. Lee, Seungyong Headid, Ronald J. Park, Song-Young J Hum Kinet Section II – Exercise Physiology & Sports Medicine Aspirin is a common nonsteroidal anti-inflammatory drug used to reduce fever, pain, and inflammation. However, aspirin’s anti-inflammatory properties may also prevent increased levels of blood lactate dehydrogenase, vascular arterial stiffness and oxidative stress induced by high-intensity exercise. The purpose of this study was to investigate the effects of 4 weeks of aspirin supplementation on lactate dehydrogenase activity, lactate, arterial stiffness, and antioxidant capacity during high-intensity exercise in Taekwondo athletes. Participants were randomly divided into two groups: aspirin supplementation (n = 10) and placebo-control (n = 10). Blood levels of lactate dehydrogenase (LDH) enzyme activity and lactate were assessed to examine muscle damage and carotid-to-radial pulse wave velocity and the augmentation index were measured to examine arterial stiffness. Blood levels of superoxide dismutase, malondialdehyde, and glutathione peroxidase were assessed to determine antioxidant capacity and levels of oxidative stress. There were significant group × time interactions for enzyme activity of LDH (Δ-60 ± 24.36 U/L) and carotid-to-radial pulse wave velocity (Δ-1.33 ± 0.54 m/s), which significantly decreased (p < 0.05) following aspirin supplementation compared to placebo-control. Superoxide dismutase (Δ359 ± 110 U/gHb) and glutathione peroxidase (Δ28.2 ± 10.1 U/gHb) significantly decreased while malondialdehyde (0Δ3.0 ± 0.1 mmol/mL) significantly increased (p < 0.05) in the placebo-control group compared to the supplementation group. However, there were no changes in lactate concentration levels or augmentation index. These results reveal that low-dose aspirin supplementation would be a useful supplementation therapy to prevent high-intensity exercise training-induced increases in oxidative damage, inflammation, skeletal muscle fatigue, and arterial stiffness in elite Taekwondo athletes. Sciendo 2020-03-31 /pmc/articles/PMC7126265/ /pubmed/32269652 http://dx.doi.org/10.2478/hukin-2019-0101 Text en © 2020 Sang Ho Lee, Elizabeth J. Pekas, Seungyong Lee, Ronald J. Headid III, Song-Young Park, published by Sciendo http://creativecommons.org/licenses/by-nc-nd/3.0 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. |
spellingShingle | Section II – Exercise Physiology & Sports Medicine Lee, Sang Ho Pekas, Elizabeth J. Lee, Seungyong Headid, Ronald J. Park, Song-Young The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study |
title | The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study |
title_full | The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study |
title_fullStr | The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study |
title_full_unstemmed | The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study |
title_short | The Impact of Aspirin Intake on Lactate Dehydrogenase, Arterial Stiffness, and Oxidative Stress During High‐Intensity Exercise: A Pilot Study |
title_sort | impact of aspirin intake on lactate dehydrogenase, arterial stiffness, and oxidative stress during high‐intensity exercise: a pilot study |
topic | Section II – Exercise Physiology & Sports Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126265/ https://www.ncbi.nlm.nih.gov/pubmed/32269652 http://dx.doi.org/10.2478/hukin-2019-0101 |
work_keys_str_mv | AT leesangho theimpactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy AT pekaselizabethj theimpactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy AT leeseungyong theimpactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy AT headidronaldj theimpactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy AT parksongyoung theimpactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy AT leesangho impactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy AT pekaselizabethj impactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy AT leeseungyong impactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy AT headidronaldj impactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy AT parksongyoung impactofaspirinintakeonlactatedehydrogenasearterialstiffnessandoxidativestressduringhighintensityexerciseapilotstudy |