Cargando…

Autoantibodies against appetite-regulating peptide hormones and neuropeptides: Putative modulation by gut microflora

OBJECTIVE: Peptide hormones synthesized in gastrointestinal and adipose tissues in addition to neuropeptides regulate appetite and body weight. Previously, autoantibodies directed against melanocortin peptides were found in patients with eating disorders; however, it remains unknown whether autoanti...

Descripción completa

Detalles Bibliográficos
Autores principales: Fetissov, Sergueï O., Hamze Sinno, Maria, Coëffier, Moïse, Bole-Feysot, Christine, Ducrotté, Philippe, Hökfelt, Tomas, Déchelotte, Pierre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Inc. 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126273/
https://www.ncbi.nlm.nih.gov/pubmed/18262391
http://dx.doi.org/10.1016/j.nut.2007.12.006
Descripción
Sumario:OBJECTIVE: Peptide hormones synthesized in gastrointestinal and adipose tissues in addition to neuropeptides regulate appetite and body weight. Previously, autoantibodies directed against melanocortin peptides were found in patients with eating disorders; however, it remains unknown whether autoantibodies directed against other appetite-regulating peptides are present in human sera and whether their levels are influenced by gut-related antigens. METHODS: Healthy women were studied for the presence of immunoglobulin (Ig) G and IgA autoantibodies directed against 14 key appetite-regulating peptides. The concept of molecular mimicry was applied to search in silico whether bacteria, viruses, or fungi contain proteins with amino acid sequences identical to appetite-regulating peptides. In addition, autoantibodies serum levels were studied in germ-free and specific pathogen-free rats. RESULTS: We found these IgG and IgA autoantibodies directed against leptin, ghrelin, peptide YY, neuropeptide Y, and other appetite-regulating peptides are present in human sera at levels of 100–900 ng/mL. Numerous cases of sequence homology with these peptides were identified among commensal and pathogenic micro-organisms including Lactobacilli, bacteroides, Helicobacter pylori, Escherichia coli, and Candida species. Decreased levels of IgA autoantibodies directed against several appetite-regulating peptides and increased levels of antighrelin IgG were found in germ-free rats compared with specific pathogen-free rats. CONCLUSION: Healthy humans and rats display autoantibodies directed against appetite-regulating peptide hormones and neuropeptides, suggesting that these autoantibodies may have physiologic implications in hunger and satiety pathways. Gut-related antigens including the intestinal microflora may influence production of theses autoantibodies, suggesting a new link between the gut and appetite control.