Cargando…
The role of high-resolution imaging in the evaluation of nanosystems for bioactive encapsulation and targeted nanotherapy
Nanotechnology has already started to significantly impact many industries and scientific fields including biotechnology, pharmaceutics, food technology and semiconductors. Nanotechnology-based tools and devices, including high-resolution imaging techniques, enable characterization and manipulation...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2007
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126426/ https://www.ncbi.nlm.nih.gov/pubmed/17669661 http://dx.doi.org/10.1016/j.micron.2007.06.009 |
Sumario: | Nanotechnology has already started to significantly impact many industries and scientific fields including biotechnology, pharmaceutics, food technology and semiconductors. Nanotechnology-based tools and devices, including high-resolution imaging techniques, enable characterization and manipulation of materials at the nanolevel and further elucidate nanoscale phenomena and equip us with the ability to fabricate novel materials and structures. One of the most promising impacts of nanotechnology is in the area of nanotherapy. Employing nanosystems such as dendrimers, nanoliposomes, niosomes, nanotubes, emulsions and quantum dots, nanotherapy leads toward the concept of personalized medicine and the potential for early diagnoses coupled with efficient targeted therapy. The development of smart targeted nanocarriers that can deliver bioactives at a controlled rate directly to the designated cells and tissues will provide better efficacy and reduced side effects. Nanocarriers improve the solubility of bioactives and allow for the delivery of not only small-molecule drugs but also the delivery of nucleic acids and proteins. This review will focus on nanoscale bioactive delivery and targeting mechanisms and the role of high-resolution imaging techniques in the evaluation and development of nanocarriers. |
---|