Cargando…
Impedimetric cell-based biosensor for real-time monitoring of cytopathic effects induced by dengue viruses
We describe an impedimetric cell-based biosensor constructed from poly-l-lysine (PLL)-modified screen-printed carbon electrode for real-time monitoring of dengue virus (DENV) infection of surface-immobilized baby hamster kidney (BHK-21) fibroblast cells. Cytopathic effects (CPE) induced by DENV-2 Ne...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2015
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126431/ https://www.ncbi.nlm.nih.gov/pubmed/25794961 http://dx.doi.org/10.1016/j.bios.2015.03.018 |
Sumario: | We describe an impedimetric cell-based biosensor constructed from poly-l-lysine (PLL)-modified screen-printed carbon electrode for real-time monitoring of dengue virus (DENV) infection of surface-immobilized baby hamster kidney (BHK-21) fibroblast cells. Cytopathic effects (CPE) induced by DENV-2 New Guinea C strain (including degenerative morphological changes, detachment, membrane degradation and death of host cells), were reflected by drastic decrease in impedance signal response detected as early as ~30 hours post-infection (hpi). In contrast, distinct CPE by conventional microscopy was evident only at ~72 hpi at the corresponding multiplicity of infection (MOI) of 10. A parameter that describes the kinetics of cytopathogenesis, CIT(50), which refers to the time taken for 50% reduction in impedance signal response, revealed an inverse linear relationship with virus titer and MOI. CIT(50) values were also delayed by 31.5 h for each order of magnitude decrease in MOI. Therefore, based on the analysis of CIT(50), the virus titer of a given sample can be determined from the measured impedance signal response. Furthermore, consistent impedance results were also obtained with clinical isolates of the four DENV serotypes verified by RT-PCR and cycle sequencing. This impedimetric cell-based biosensor represents a label-free and continuous approach for the dynamic measurement of cellular responses toward DENV infection, and for detecting the presence of infectious viral particles. |
---|