Cargando…

Heteroleptic copper phenanthroline complexes in motion: From stand-alone devices to multi-component machinery

Two and a half decades of copper phenanthroline-based switches, devices and machines have illustrated the rich dynamic nature of these metal complexes. With an emphasis on the metal-ligand dissociation as the rate-determining step the present review summarizes not only spectacular examples of machin...

Descripción completa

Detalles Bibliográficos
Autores principales: Goswami, Abir, Schmittel, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126816/
https://www.ncbi.nlm.nih.gov/pubmed/32287354
http://dx.doi.org/10.1016/j.ccr.2018.08.011
Descripción
Sumario:Two and a half decades of copper phenanthroline-based switches, devices and machines have illustrated the rich dynamic nature of these metal complexes. With an emphasis on the metal-ligand dissociation as the rate-determining step the present review summarizes not only spectacular examples of machinery, but also highlights rate data collected during a variety of investigations. Copper-ligand exchange reactions are mostly triggered by redox processes, addition of metal ions or addition of ligands. While the rate data spread over >8 orders of magnitude, individual effects of solvent, steric bulk, flexibility, σ-basicity and the trajectory (intra- vs. intermolecular dissociation) have large impact. Unfortunately, in many cases the exact mechanism in the rate-determining step (nucleophile-induced vs. monomolecular metal-ligand dissociation) has not been determined, suggesting to invest further efforts in the physical (in)organic chemistry of such coordination-driven systems.