Cargando…

A Plant Virus Movement Protein Forms Ringlike Complexes with the Major Nucleolar Protein, Fibrillarin, In Vitro

Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2′-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized p...

Descripción completa

Detalles Bibliográficos
Autores principales: Canetta, Elisabetta, Kim, Sang Hyon, Kalinina, Natalia O., Shaw, Jane, Adya, Ashok K., Gillespie, Trudi, Brown, John W.S., Taliansky, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2008
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126915/
https://www.ncbi.nlm.nih.gov/pubmed/18199452
http://dx.doi.org/10.1016/j.jmb.2007.12.039
Descripción
Sumario:Fibrillarin, one of the major proteins of the nucleolus, has methyltransferase activity directing 2′-O-ribose methylation of rRNA and snRNAs and is required for rRNA processing. The ability of the plant umbravirus, groundnut rosette virus, to move long distances through the phloem, the specialized plant vascular system, has been shown to strictly depend on the interaction of one of its proteins, the ORF3 protein (protein encoded by open reading frame 3), with fibrillarin. This interaction is essential for several stages in the groundnut rosette virus life cycle such as nucleolar import of the ORF3 protein via Cajal bodies, relocalization of some fibrillarin from the nucleolus to cytoplasm, and assembly of cytoplasmic umbraviral ribonucleoprotein particles that are themselves required for the long-distance spread of the virus and systemic infection. Here, using atomic force microscopy, we determine the architecture of these complexes as single-layered ringlike structures with a diameter of 18–22 nm and a height of 2.0 ± 0.4 nm, which consist of several (n = 6–8) distinct protein granules. We also estimate the molar ratio of fibrillarin to ORF3 protein in the complexes as approximately 1:1. Based on these data, we propose a model of the structural organization of fibrillarin–ORF3 protein complexes and discuss potential mechanistic and functional implications that may also apply to other viruses.