Cargando…
Trends in DNA biosensors
Biosensors have witnessed an escalating interest nowadays, both in the research and commercial fields. Deoxyribonucleic acid (DNA) biosensors (genosensors) have been exploited for their inherent physico-chemical stability and suitability to discriminate different organism strains. The main principle...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7126963/ http://dx.doi.org/10.1016/j.talanta.2008.07.024 |
Sumario: | Biosensors have witnessed an escalating interest nowadays, both in the research and commercial fields. Deoxyribonucleic acid (DNA) biosensors (genosensors) have been exploited for their inherent physico-chemical stability and suitability to discriminate different organism strains. The main principle of detection among genosensors relies on specific DNA hybridization, directly on the surface of a physical transducer. This review covers the main DNA immobilization techniques reported so far, new micro- and nanotechnological platforms for biosensing and the transduction mechanisms in genosensors. Clinical applications, in particular, demand large-scale and decentralized DNA testing. New schemes for DNA diagnosis include DNA chips and microfluidics, which couples DNA detection with sample pretreatment under in vivo-like hybridization conditions. Higher sensitivity and specificity may arise from nanoengineered structures, like carbon nanotubes (CNTs) and DNA/protein conjugates. A new platform for universal DNA biosensing is also presented, and its implications for the future of molecular diagnosis are argued. |
---|