Cargando…

A simple and compact smartphone-based device for the quantitative readout of colloidal gold lateral flow immunoassay strips

Colloidal gold lateral flow immunoassay strips (AuNPs-LFIS) have been widely applied as qualitative diagnostic tools for point-of-care tests (POCT). If strip readers were incorporated, their use could be extended to quantitative analysis. However, their cost and non-portability render commercial str...

Descripción completa

Detalles Bibliográficos
Autores principales: Xiao, Wei, Huang, Caihong, Xu, Fei, Yan, Junjie, Bian, Hongfen, Fu, Qiangqiang, Xie, Kaixin, Wang, Lei, Tang, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127147/
https://www.ncbi.nlm.nih.gov/pubmed/32288251
http://dx.doi.org/10.1016/j.snb.2018.03.110
Descripción
Sumario:Colloidal gold lateral flow immunoassay strips (AuNPs-LFIS) have been widely applied as qualitative diagnostic tools for point-of-care tests (POCT). If strip readers were incorporated, their use could be extended to quantitative analysis. However, their cost and non-portability render commercial strip readers unavailable for use in either home testing, community or rural hospital diagnosis. This is particularly true for on-site testing. Here, a smartphone-based reader was designed and 3D-printed for quantitatively assess AuNPs-LFIS. The basic principle of the devise was relying on a smartphone’s ambient light sensor (SPALS). This sensor was harnessed to measure the transmitted light intensities originating from the T-lines on the strips, the transmitted light intensities vary with concentration of AuNP on the T-lines. To validate this approach, our newly developed smartphone’s ambient light sensor-based reader (SPALS-reader) was used to readout AuNPs-LFIS of three analytical targets: cadmium ion (Cd(2+); limit of detection (LOD) was 0.16 ng/mL), clenbuterol (CL; LOD was 0.046 ng/mL), and porcine epidemic diarrhea virus (PEDV; LOD was 0.055 μg/mL). The result showed good consistency with the results of conventional image analysis approaches, indicating that the smartphone-based device is appropriate for use in AuNPs-LFIS readouts. Compared with the traditional analysis method, the developed AuNPs-LFIS reader is easier operated, lower cost and more portable, which provided an on-site quantitative analysis tool for AuNPs-LFIS and enhances the applied range of AuNPs-LFIS.