Cargando…

A highly specific ratiometric two-photon fluorescent probe to detect dipeptidyl peptidase IV in plasma and living systems

In this study, a highly specific ratiometric two-photon fluorescent probe GP-BAN was developed and well-characterized to monitor dipeptidyl peptidase IV in plasma and living systems. GP-BAN was designed on the basis of the catalytic properties and substrate preference of DPP-IV, and it could be read...

Descripción completa

Detalles Bibliográficos
Autores principales: Zou, Li-Wei, Wang, Ping, Qian, Xing-Kai, Feng, Lei, Yu, Yang, Wang, Dan-Dan, Jin, Qiang, Hou, Jie, Liu, Zhi-Hong, Ge, Guang-Bo, Yang, Ling
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127234/
https://www.ncbi.nlm.nih.gov/pubmed/27923191
http://dx.doi.org/10.1016/j.bios.2016.11.068
Descripción
Sumario:In this study, a highly specific ratiometric two-photon fluorescent probe GP-BAN was developed and well-characterized to monitor dipeptidyl peptidase IV in plasma and living systems. GP-BAN was designed on the basis of the catalytic properties and substrate preference of DPP-IV, and it could be readily hydrolyzed upon addition of DPP-IV under physiological conditions. Both reaction phenotyping and inhibition assays demonstrated that GP-BAN displayed good reactivity and high selectivity towards DPP-IV over other human serine hydrolases including FAP, DPP-VIII, and DPP-IX. The probe was successfully used to monitor the real activities of DPP-IV in complex biological systems including diluted plasma, while it could be used for high throughput screening of DPP-IV inhibitors by using human plasma or tissue preparations as enzyme sources. As a two-photon fluorescent probe, GP-BAN was also successfully used for two-photon imaging of endogenous DPP-IV in living cells and tissues, and showed high ratiometric imaging resolution and deep-tissue penetration ability. Taken together, a ratiometric two-photon fluorescent probe GP-BAN was developed and well-characterized for highly selective and sensitive detection of DPP-IV in complex biological systems, which could serve as a promising imaging tool to explore the biological functions and physiological roles of this key enzyme in living systems.