Cargando…

Antiviral escin derivatives from the seeds of Aesculus turbinata Blume (Japanese horse chestnut)

Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high fatality of piglets, influencing the swine industry. Japanese horse chestnut (seed of Aesculus turbinata) contains many saponin mixtures, called escins, and has been used for a long time as a traditional medicinal plant. Structur...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Ji Won, Ha, Thi-Kim-Quy, Cho, Hyomoon, Kim, Eunhee, Shim, Sang Hee, Yang, Jun-Li, Oh, Won Keun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127610/
https://www.ncbi.nlm.nih.gov/pubmed/28527823
http://dx.doi.org/10.1016/j.bmcl.2017.05.022
Descripción
Sumario:Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and high fatality of piglets, influencing the swine industry. Japanese horse chestnut (seed of Aesculus turbinata) contains many saponin mixtures, called escins, and has been used for a long time as a traditional medicinal plant. Structure-activity relationship (SAR) studies on escins have revealed that acylations at C-21 and C-22 with angeloyl or tigloyl groups were important for their cytotoxic effects. However, the strong cytotoxicity of escins makes them hard to utilize for other diseases and to develop as nutraceuticals. In this research, we investigated whether escin derivatives 1–7 (including new compounds 2, 3, 5 and 6), without the angeloyl or tigloyl groups and with modified glycosidic linkages by hydrolysis, have PEDV inhibitory effects with less cytotoxicity. Compounds 1–7 had no cytotoxicity at 20 μM on VERO cells, while compounds 8–10 showed strong cytotoxicity at similar concentrations on PEDV. Our results suggest that escin derivatives showed strong inhibitory activities on PEDV replication with lowered cytotoxicity. These studies propose a method to utilize Japanese horse chestnut for treating PEDV and to increase the diversity of its bioactive compounds.