Cargando…
In vitro study of the effect of a probiotic bacterium Lactobacillus rhamnosus against herpes simplex virus type 1
BACKGROUND: Due to the emergence of drug resistance in herpes simplex virus type 1 (HSV-1), researchers are trying to find other methods for treating herpes simplex virus type 1 infections. Probiotic bacteria are effective in macrophage activation and may have antiviral activities. OBJECTIVE: This s...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Editora Ltda.
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7128665/ https://www.ncbi.nlm.nih.gov/pubmed/22552453 http://dx.doi.org/10.1016/S1413-8670(12)70293-3 |
Sumario: | BACKGROUND: Due to the emergence of drug resistance in herpes simplex virus type 1 (HSV-1), researchers are trying to find other methods for treating herpes simplex virus type 1 infections. Probiotic bacteria are effective in macrophage activation and may have antiviral activities. OBJECTIVE: This study aimed at verifying the direct effect of Lactobacillus rhamnosus, a probiotic bacterium, in comparison with Escherichia coli, a non-probiotic one, on HSV-1 infection, and determining its effect on macrophage activation for in vitro elimination of HSV-1 infection. METHODS: The above bacteria were introduced into HSV-1 infected Vero cells, and their effects were examined using both MTT and plaque assay. To determine macrophage activation against in vitro HSV-1 infection, J774 cells were exposed to these bacteria; then, macrophage viability was examined with the MTT method, and tumor necrosis factor alpha (TNF-α), Interferon-gamma (IFN-γ), and nitric oxide (NO) assessments were performed using the ELISA method. RESULTS: A significant increased viability of macrophages was observed (p < 0.05) in the presence of Lactobacillus rhamnosus before and after HSV-1 infection when compared with Escherichia coli as a non-probiotic bacterium. However, tumor necrosis factor α concentration produced by Escherichia coli-treated J774 cells was significantly higher than Lactobacillus rhamnosus-treated J774 cells (p < 0.05). Interferon-gamma and NO production were not different in the groups treated with Escherichia coli or with Lactobacillus rhamnosus. CONCLUSION: The results of this study indicate that Lactobacillus rhamnosus enhances macrophage viability for HSV-1 elimination and activation against HSV-1 more effectively, when compared with non-probiotic Escherichia coli. It also seems that receptor occupation of macrophage sites decreases HSV-1 infectivity by both of the studied bacteria. |
---|