Cargando…

Decoding the enigma of antiviral crisis: Does one target molecule regulate all?

Disease fatality associated with Ebola, SARS-CoV and dengue infections in humans is attributed to a cytokine storm that is triggered by excessive pro-inflammatory responses. Interleukin (IL)-6 acts as a mediator between pro- and anti-inflammatory reactivity by initiating trans- and classical-signali...

Descripción completa

Detalles Bibliográficos
Autores principales: Mahmud-Al-Rafat, Abdullah, Majumder, Apurba, Taufiqur Rahman, K.M., Mahedi Hasan, A.M., Didarul Islam, K.M., Taylor-Robinson, Andrew W., Billah, Md Morsaline
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7129598/
https://www.ncbi.nlm.nih.gov/pubmed/30616034
http://dx.doi.org/10.1016/j.cyto.2018.12.008
Descripción
Sumario:Disease fatality associated with Ebola, SARS-CoV and dengue infections in humans is attributed to a cytokine storm that is triggered by excessive pro-inflammatory responses. Interleukin (IL)-6 acts as a mediator between pro- and anti-inflammatory reactivity by initiating trans- and classical-signaling, respectively. Hence, IL-6 is assumed to provide a target for a broad range of antiviral agents. Available immunosuppressive antivirals are directed to control an often exaggerated pro-inflammatory response that gives rise to complex clinical conditions such as lymphocytopenia. It is known that IL-6, via its soluble receptor (sIL-6R), initiates a pro-inflammatory response while an anti-inflammatory response is triggered by the membrane-bound IL-6 receptor (IL-6R). Future antivirals should thus aim to target the mechanism that regulates switching between IL-6 trans- and classical-signaling. In this review, we propose that the tumour necrosis factor-α converting enzyme ADAM-17 could be the master molecule involved in regulating IL-6 class switching and through this in controlling pro- and anti-inflammatory responses to viral antigenic stimuli. Therefore, ADAM-17 should be considered as a potential target molecule for novel antiviral drug discovery that would regulate host reactivity to infection and thereby limit or prevent fatal outcomes.