Cargando…
Chapter 1 Viruses as Model Systems in Cell Biology
This chapter focuses on the contributions that studies with viruses have made to current concepts in cell biology. Among the important advantages that viruses provide in such studies is their structural and genetic simplicity. The chapter describes the methods for growth, assay, and purification of...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Academic Press Inc. Published by Elsevier Inc.
1994
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7130218/ https://www.ncbi.nlm.nih.gov/pubmed/7823868 http://dx.doi.org/10.1016/S0091-679X(08)60596-8 |
Sumario: | This chapter focuses on the contributions that studies with viruses have made to current concepts in cell biology. Among the important advantages that viruses provide in such studies is their structural and genetic simplicity. The chapter describes the methods for growth, assay, and purification of viruses and infection of cells by several viruses that have been widely utilized for studies of cellular processes. Most investigations of virus replication at the cellular level are carried out using animal cells in culture. For the events in individual cells to occur with a high level of synchrony, single cycle growth conditions are used. Cells are infected using a high multiplicity of infectious virus particles in a low volume of medium to enhance the efficiency of virus adsorption to cell surfaces. After the adsorption period, the residual inoculum is removed and replaced with an appropriate culture medium. During further incubation, each individual cell in the culture is at a similar temporal stage in the viral replication process. Therefore, experimental procedures carried out on the entire culture reflect the replicative events occurring within an individual cell. The length of a single cycle of virus growth can range from a few hours to several days, depending on the virus type. |
---|