Cargando…
Heterogeneity of gene expression of the hemagglutinin-esterase (HE) protein of murine coronaviruses()
The hemagglutinin-esterase (HE) membrane glycoprotein is present only in some members of the coronavirus family, including some strains of mouse hepatitis virus (MHV). In the JHM strain of MHV, expression of the HE gene is variable and corresponds to the number of copies of a UCUAA pentanucleotide s...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Inc.
1991
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7130567/ https://www.ncbi.nlm.nih.gov/pubmed/1649505 http://dx.doi.org/10.1016/0042-6822(91)90994-M |
Sumario: | The hemagglutinin-esterase (HE) membrane glycoprotein is present only in some members of the coronavirus family, including some strains of mouse hepatitis virus (MHV). In the JHM strain of MHV, expression of the HE gene is variable and corresponds to the number of copies of a UCUAA pentanucleotide sequence present at the 3′-end of the leader RNA. This copy number varies among MHV strains, depending on their passage history. The JHM isolates with two copies of UCUAA in their leader RNA showed a high level of HE expression, whereas the JHM isolate with three copies had a low-level expression. In this study, the analysis of HE gene expression was extended to other MHV strains. The synthesis of HE mRNA in these viruses also correlates with the copy number of UCUAA in the leader RNA and the particular intergenic sequence preceding the HE gene. In one MHV strain, MHV-1, no detectable HE mRNA was synthesized, despite the presence of a proper transcription initiation signal. This lack of HE mRNA expression was consistent with a leader RNA containing three UCUAA copies. However, mutations and deletions within the coding region of the MHV-1 HE gene have generated a stretch of sequence which resembled the transcriptional initiation motif, and was shown to initiate the synthesis of a novel smaller mRNA. These findings strengthened the theory that interactions between leader RNA and transcriptional initiation sequences regulate MHV subgenomic mRNA transcription. Sequence analysis revealed that most MHV strains, through extensive mutations, deletions, or insertions, have lost the complete HE open reading frame, thus turning HE into a pseudogene. This high degree of variation is unusual as the other three structural proteins (spike, membrane, and nucleocapsid) are well-maintained. In contrast to bovine coronavirus, which apparently requires HE for viral replication, the HE protein in MHV may be only an accessory protein which is not necessary for viral replication. JHM and MHV-S, however, have preserved the expression of HE protein. |
---|