Cargando…

Sequence analysis of the nucleocapsid protein gene of human coronavirus 229E()

Human coronaviruses are important human pathogens and have also been implicated in multiple sclerosis. To further understand the molecular biology of human coronavirus 229E (HCV-229E), molecular cloning and sequence analysis of the viral RNA have been initiated. Following established protocols, the...

Descripción completa

Detalles Bibliográficos
Autores principales: Schreiber, Steven S., Kamahora, Toshio, Lai, Michael M.C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier Inc. 1989
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131124/
https://www.ncbi.nlm.nih.gov/pubmed/2922924
http://dx.doi.org/10.1016/0042-6822(89)90050-0
Descripción
Sumario:Human coronaviruses are important human pathogens and have also been implicated in multiple sclerosis. To further understand the molecular biology of human coronavirus 229E (HCV-229E), molecular cloning and sequence analysis of the viral RNA have been initiated. Following established protocols, the 3′-terminal 1732 nucleotides of the genome were sequenced. A large open reading frame encodes a 389 amino acid protein of 43,366 Da, which is presumably the nucleocapsid protein. The predicted protein is similar in size, chemical properties, and amino acid sequence to the nucleocapsid proteins of other coronaviruses. This is especially evident when the sequence is compared with that of the antigenically related porcine transmissible gastroenteritis virus (TGEV), with which a region of 46% amino acid sequence homology was found. Hydropathy profiles revealed the existence of several conserved domains which could have functional significance. An intergenic consensus sequence precedes the 5′-end of the proposed nucleocapsid protein gene. The consensus sequence is present in other coronaviruses and has been proposed as the site of binding of the leader sequence for mRNA transcriptional start. This region was also examined by primer extension analysis of mRNAs, which identified a 60-nucleotide leader sequence. The 3′-noncoding region of the genome contains an 11-nucleotide sequence, which is relatively conserved throughout the Coronavirus family and lends support to the theory that this region is important for the replication of negative-strand RNA.