Cargando…

Differentiation of acid-ph-dependent and -nondependent entry pathways for mouse hepatitis virus

Early events of infection of MHV were studied in comparison with those of VSV, which is known to enter cells by an endocytic pathway. Treatment of mouse L-2 fibroblasts with ammonium chloride, chloroquine, or dansylcadaverine inhibited infection of MHV to a much lesser degree than that of VSV, sugge...

Descripción completa

Detalles Bibliográficos
Autores principales: Kooi, Cora, Cervin, Marguerite, Anderson, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier Inc. 1991
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131382/
https://www.ncbi.nlm.nih.gov/pubmed/1845820
http://dx.doi.org/10.1016/0042-6822(91)90014-3
Descripción
Sumario:Early events of infection of MHV were studied in comparison with those of VSV, which is known to enter cells by an endocytic pathway. Treatment of mouse L-2 fibroblasts with ammonium chloride, chloroquine, or dansylcadaverine inhibited infection of MHV to a much lesser degree than that of VSV, suggesting a relatively minor role for the endocytic pathway and functional endosomes in MHV infection. Endocytosis of MHV and VSV into L-2 cells was assayed by the recovery of infectious (i.e., not uncoated) viruses from homogenates of cells harvested within the first few minutes of infection (and treated with protease to remove surface-bound virus). The results thus suggest that while a small proportion of the MHV inoculum is internalized by endocytosis, productive infection does not depend on functional endocytosis as utilized by VSV. Studies on direct virion-mediated cell fusion showed that MHV can induce fusion at pH 7.4, whereas VSV causes fusion at pH 5.0. Taken together, the above results suggest that MHV enters L-2 cells predominantly by membrane fusion with a non-acidified compartment such as the plasma membrane, endocytic vesicles, or endosomes (prior to their acidification). Results obtained from cell lines which differed in permissiveness to MHV infection suggested that the ability to support MHV infection does not correlate with endocytosis. Rather, nonpermissive cells, such as rat astrocytoma (C-6) and Vero cells, showed higher levels of recoverable internalized MHV than did fully permissive L-2 cells. Cells which are normally nonpermissive to MHV, could be rendered MHV-susceptible by PEG-induced fusion of cell surface-bound virus. Such PEG-mediated susceptibility to MHV infection was insensitive to inhibition by ammonium chloride, supporting the idea that host cell restriction of MHV infection in C-6 and Vero cells may be due to a block in nonendosomal membrane fusion. Thus endocytic internalization of MHV, which clearly occurs in a variety of cells, does not guarantee productive infection.