Cargando…

A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles

Most risk variants for brain disorders identified by genome-wide association studies (GWAS) reside in non-coding genome, which makes deciphering biological mechanisms difficult. A commonly used tool, MAGMA, addresses this issue by aggregating SNP associations to nearest genes. Here, we developed a p...

Descripción completa

Detalles Bibliográficos
Autores principales: Sey, Nancy Y. A, Hu, Benxia, Mah, Won, Fauni, Harper, McAfee, Jessica Caitlin, Rajarajan, Prashanth, Brennand, Kristen J, Akbarian, Schahram, Won, Hyejung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131892/
https://www.ncbi.nlm.nih.gov/pubmed/32152537
http://dx.doi.org/10.1038/s41593-020-0603-0
_version_ 1783517337455951872
author Sey, Nancy Y. A
Hu, Benxia
Mah, Won
Fauni, Harper
McAfee, Jessica Caitlin
Rajarajan, Prashanth
Brennand, Kristen J
Akbarian, Schahram
Won, Hyejung
author_facet Sey, Nancy Y. A
Hu, Benxia
Mah, Won
Fauni, Harper
McAfee, Jessica Caitlin
Rajarajan, Prashanth
Brennand, Kristen J
Akbarian, Schahram
Won, Hyejung
author_sort Sey, Nancy Y. A
collection PubMed
description Most risk variants for brain disorders identified by genome-wide association studies (GWAS) reside in non-coding genome, which makes deciphering biological mechanisms difficult. A commonly used tool, MAGMA, addresses this issue by aggregating SNP associations to nearest genes. Here, we developed a platform, Hi-C coupled MAGMA (H-MAGMA), that advances MAGMA by incorporating chromatin interaction profiles from human brain tissue across two developmental epochs and two brain cell types. By employing gene regulatory relationships in the disease-relevant tissue, H-MAGMA identifies neurobiologically-relevant target genes. We applied H-MAGMA to five psychiatric disorders and four neurodegenerative disorders to interrogate biological pathways, developmental windows, and cell types implicated for each disorder. Psychiatric disorder risk genes tended to be expressed during mid-gestation and in excitatory neurons, whereas degenerative disorder risk genes showed increasing expression over time and more diverse cell-type specificities. H-MAGMA adds to existing analytic frameworks to help identify the neurobiological consequences of brain disorder genetics.
format Online
Article
Text
id pubmed-7131892
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-71318922020-09-09 A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles Sey, Nancy Y. A Hu, Benxia Mah, Won Fauni, Harper McAfee, Jessica Caitlin Rajarajan, Prashanth Brennand, Kristen J Akbarian, Schahram Won, Hyejung Nat Neurosci Article Most risk variants for brain disorders identified by genome-wide association studies (GWAS) reside in non-coding genome, which makes deciphering biological mechanisms difficult. A commonly used tool, MAGMA, addresses this issue by aggregating SNP associations to nearest genes. Here, we developed a platform, Hi-C coupled MAGMA (H-MAGMA), that advances MAGMA by incorporating chromatin interaction profiles from human brain tissue across two developmental epochs and two brain cell types. By employing gene regulatory relationships in the disease-relevant tissue, H-MAGMA identifies neurobiologically-relevant target genes. We applied H-MAGMA to five psychiatric disorders and four neurodegenerative disorders to interrogate biological pathways, developmental windows, and cell types implicated for each disorder. Psychiatric disorder risk genes tended to be expressed during mid-gestation and in excitatory neurons, whereas degenerative disorder risk genes showed increasing expression over time and more diverse cell-type specificities. H-MAGMA adds to existing analytic frameworks to help identify the neurobiological consequences of brain disorder genetics. 2020-03-09 2020-04 /pmc/articles/PMC7131892/ /pubmed/32152537 http://dx.doi.org/10.1038/s41593-020-0603-0 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Sey, Nancy Y. A
Hu, Benxia
Mah, Won
Fauni, Harper
McAfee, Jessica Caitlin
Rajarajan, Prashanth
Brennand, Kristen J
Akbarian, Schahram
Won, Hyejung
A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles
title A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles
title_full A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles
title_fullStr A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles
title_full_unstemmed A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles
title_short A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles
title_sort computational tool (h-magma) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131892/
https://www.ncbi.nlm.nih.gov/pubmed/32152537
http://dx.doi.org/10.1038/s41593-020-0603-0
work_keys_str_mv AT seynancyya acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT hubenxia acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT mahwon acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT fauniharper acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT mcafeejessicacaitlin acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT rajarajanprashanth acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT brennandkristenj acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT akbarianschahram acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT wonhyejung acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT seynancyya computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT hubenxia computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT mahwon computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT fauniharper computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT mcafeejessicacaitlin computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT rajarajanprashanth computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT brennandkristenj computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT akbarianschahram computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles
AT wonhyejung computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles