Cargando…
A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles
Most risk variants for brain disorders identified by genome-wide association studies (GWAS) reside in non-coding genome, which makes deciphering biological mechanisms difficult. A commonly used tool, MAGMA, addresses this issue by aggregating SNP associations to nearest genes. Here, we developed a p...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131892/ https://www.ncbi.nlm.nih.gov/pubmed/32152537 http://dx.doi.org/10.1038/s41593-020-0603-0 |
_version_ | 1783517337455951872 |
---|---|
author | Sey, Nancy Y. A Hu, Benxia Mah, Won Fauni, Harper McAfee, Jessica Caitlin Rajarajan, Prashanth Brennand, Kristen J Akbarian, Schahram Won, Hyejung |
author_facet | Sey, Nancy Y. A Hu, Benxia Mah, Won Fauni, Harper McAfee, Jessica Caitlin Rajarajan, Prashanth Brennand, Kristen J Akbarian, Schahram Won, Hyejung |
author_sort | Sey, Nancy Y. A |
collection | PubMed |
description | Most risk variants for brain disorders identified by genome-wide association studies (GWAS) reside in non-coding genome, which makes deciphering biological mechanisms difficult. A commonly used tool, MAGMA, addresses this issue by aggregating SNP associations to nearest genes. Here, we developed a platform, Hi-C coupled MAGMA (H-MAGMA), that advances MAGMA by incorporating chromatin interaction profiles from human brain tissue across two developmental epochs and two brain cell types. By employing gene regulatory relationships in the disease-relevant tissue, H-MAGMA identifies neurobiologically-relevant target genes. We applied H-MAGMA to five psychiatric disorders and four neurodegenerative disorders to interrogate biological pathways, developmental windows, and cell types implicated for each disorder. Psychiatric disorder risk genes tended to be expressed during mid-gestation and in excitatory neurons, whereas degenerative disorder risk genes showed increasing expression over time and more diverse cell-type specificities. H-MAGMA adds to existing analytic frameworks to help identify the neurobiological consequences of brain disorder genetics. |
format | Online Article Text |
id | pubmed-7131892 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-71318922020-09-09 A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles Sey, Nancy Y. A Hu, Benxia Mah, Won Fauni, Harper McAfee, Jessica Caitlin Rajarajan, Prashanth Brennand, Kristen J Akbarian, Schahram Won, Hyejung Nat Neurosci Article Most risk variants for brain disorders identified by genome-wide association studies (GWAS) reside in non-coding genome, which makes deciphering biological mechanisms difficult. A commonly used tool, MAGMA, addresses this issue by aggregating SNP associations to nearest genes. Here, we developed a platform, Hi-C coupled MAGMA (H-MAGMA), that advances MAGMA by incorporating chromatin interaction profiles from human brain tissue across two developmental epochs and two brain cell types. By employing gene regulatory relationships in the disease-relevant tissue, H-MAGMA identifies neurobiologically-relevant target genes. We applied H-MAGMA to five psychiatric disorders and four neurodegenerative disorders to interrogate biological pathways, developmental windows, and cell types implicated for each disorder. Psychiatric disorder risk genes tended to be expressed during mid-gestation and in excitatory neurons, whereas degenerative disorder risk genes showed increasing expression over time and more diverse cell-type specificities. H-MAGMA adds to existing analytic frameworks to help identify the neurobiological consequences of brain disorder genetics. 2020-03-09 2020-04 /pmc/articles/PMC7131892/ /pubmed/32152537 http://dx.doi.org/10.1038/s41593-020-0603-0 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Sey, Nancy Y. A Hu, Benxia Mah, Won Fauni, Harper McAfee, Jessica Caitlin Rajarajan, Prashanth Brennand, Kristen J Akbarian, Schahram Won, Hyejung A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles |
title | A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles |
title_full | A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles |
title_fullStr | A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles |
title_full_unstemmed | A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles |
title_short | A computational tool (H-MAGMA) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles |
title_sort | computational tool (h-magma) for improved prediction of brain disorder risk genes by incorporating brain chromatin interaction profiles |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131892/ https://www.ncbi.nlm.nih.gov/pubmed/32152537 http://dx.doi.org/10.1038/s41593-020-0603-0 |
work_keys_str_mv | AT seynancyya acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT hubenxia acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT mahwon acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT fauniharper acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT mcafeejessicacaitlin acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT rajarajanprashanth acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT brennandkristenj acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT akbarianschahram acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT wonhyejung acomputationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT seynancyya computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT hubenxia computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT mahwon computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT fauniharper computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT mcafeejessicacaitlin computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT rajarajanprashanth computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT brennandkristenj computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT akbarianschahram computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles AT wonhyejung computationaltoolhmagmaforimprovedpredictionofbraindisorderriskgenesbyincorporatingbrainchromatininteractionprofiles |