Cargando…

Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia

Cardiac ischaemia‐reperfusion (I/R) injury has been attributed to stress signals arising from an impaired mitochondrial electron transport chain (ETC), which include redox imbalance, metabolic stalling and excessive production of reactive oxygen species (ROS). The alternative oxidase (AOX) is a resp...

Descripción completa

Detalles Bibliográficos
Autores principales: Szibor, Marten, Schreckenberg, Rolf, Gizatullina, Zemfira, Dufour, Eric, Wiesnet, Marion, Dhandapani, Praveen K., Debska‐Vielhaber, Grazyna, Heidler, Juliana, Wittig, Ilka, Nyman, Tuula A., Gärtner, Ulrich, Hall, Andrew R., Pell, Victoria, Viscomi, Carlo, Krieg, Thomas, Murphy, Michael P., Braun, Thomas, Gellerich, Frank N., Schlüter, Klaus‐Dieter, Jacobs, Howard T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131948/
https://www.ncbi.nlm.nih.gov/pubmed/32040259
http://dx.doi.org/10.1111/jcmm.15043
_version_ 1783517350172033024
author Szibor, Marten
Schreckenberg, Rolf
Gizatullina, Zemfira
Dufour, Eric
Wiesnet, Marion
Dhandapani, Praveen K.
Debska‐Vielhaber, Grazyna
Heidler, Juliana
Wittig, Ilka
Nyman, Tuula A.
Gärtner, Ulrich
Hall, Andrew R.
Pell, Victoria
Viscomi, Carlo
Krieg, Thomas
Murphy, Michael P.
Braun, Thomas
Gellerich, Frank N.
Schlüter, Klaus‐Dieter
Jacobs, Howard T.
author_facet Szibor, Marten
Schreckenberg, Rolf
Gizatullina, Zemfira
Dufour, Eric
Wiesnet, Marion
Dhandapani, Praveen K.
Debska‐Vielhaber, Grazyna
Heidler, Juliana
Wittig, Ilka
Nyman, Tuula A.
Gärtner, Ulrich
Hall, Andrew R.
Pell, Victoria
Viscomi, Carlo
Krieg, Thomas
Murphy, Michael P.
Braun, Thomas
Gellerich, Frank N.
Schlüter, Klaus‐Dieter
Jacobs, Howard T.
author_sort Szibor, Marten
collection PubMed
description Cardiac ischaemia‐reperfusion (I/R) injury has been attributed to stress signals arising from an impaired mitochondrial electron transport chain (ETC), which include redox imbalance, metabolic stalling and excessive production of reactive oxygen species (ROS). The alternative oxidase (AOX) is a respiratory enzyme, absent in mammals, that accepts electrons from a reduced quinone pool to reduce oxygen to water, thereby restoring electron flux when impaired and, in the process, blunting ROS production. Hence, AOX represents a natural rescue mechanism from respiratory stress. This study aimed to determine how respiratory restoration through xenotopically expressed AOX affects the re‐perfused post‐ischaemic mouse heart. As expected, AOX supports ETC function and attenuates the ROS load in post‐anoxic heart mitochondria. However, post‐ischaemic cardiac remodelling over 3 and 9 weeks was not improved. AOX blunted transcript levels of factors known to be up‐regulated upon I/R such as the atrial natriuretic peptide (Anp) whilst expression of pro‐fibrotic and pro‐apoptotic transcripts were increased. Ex vivo analysis revealed contractile failure at nine but not 3 weeks after ischaemia whilst label‐free quantitative proteomics identified an increase in proteins promoting adverse extracellular matrix remodelling. Together, this indicates an essential role for ETC‐derived signals during cardiac adaptive remodelling and identified ROS as a possible effector.
format Online
Article
Text
id pubmed-7131948
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-71319482020-04-06 Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia Szibor, Marten Schreckenberg, Rolf Gizatullina, Zemfira Dufour, Eric Wiesnet, Marion Dhandapani, Praveen K. Debska‐Vielhaber, Grazyna Heidler, Juliana Wittig, Ilka Nyman, Tuula A. Gärtner, Ulrich Hall, Andrew R. Pell, Victoria Viscomi, Carlo Krieg, Thomas Murphy, Michael P. Braun, Thomas Gellerich, Frank N. Schlüter, Klaus‐Dieter Jacobs, Howard T. J Cell Mol Med Original Articles Cardiac ischaemia‐reperfusion (I/R) injury has been attributed to stress signals arising from an impaired mitochondrial electron transport chain (ETC), which include redox imbalance, metabolic stalling and excessive production of reactive oxygen species (ROS). The alternative oxidase (AOX) is a respiratory enzyme, absent in mammals, that accepts electrons from a reduced quinone pool to reduce oxygen to water, thereby restoring electron flux when impaired and, in the process, blunting ROS production. Hence, AOX represents a natural rescue mechanism from respiratory stress. This study aimed to determine how respiratory restoration through xenotopically expressed AOX affects the re‐perfused post‐ischaemic mouse heart. As expected, AOX supports ETC function and attenuates the ROS load in post‐anoxic heart mitochondria. However, post‐ischaemic cardiac remodelling over 3 and 9 weeks was not improved. AOX blunted transcript levels of factors known to be up‐regulated upon I/R such as the atrial natriuretic peptide (Anp) whilst expression of pro‐fibrotic and pro‐apoptotic transcripts were increased. Ex vivo analysis revealed contractile failure at nine but not 3 weeks after ischaemia whilst label‐free quantitative proteomics identified an increase in proteins promoting adverse extracellular matrix remodelling. Together, this indicates an essential role for ETC‐derived signals during cardiac adaptive remodelling and identified ROS as a possible effector. John Wiley and Sons Inc. 2020-02-10 2020-03 /pmc/articles/PMC7131948/ /pubmed/32040259 http://dx.doi.org/10.1111/jcmm.15043 Text en © 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Szibor, Marten
Schreckenberg, Rolf
Gizatullina, Zemfira
Dufour, Eric
Wiesnet, Marion
Dhandapani, Praveen K.
Debska‐Vielhaber, Grazyna
Heidler, Juliana
Wittig, Ilka
Nyman, Tuula A.
Gärtner, Ulrich
Hall, Andrew R.
Pell, Victoria
Viscomi, Carlo
Krieg, Thomas
Murphy, Michael P.
Braun, Thomas
Gellerich, Frank N.
Schlüter, Klaus‐Dieter
Jacobs, Howard T.
Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia
title Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia
title_full Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia
title_fullStr Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia
title_full_unstemmed Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia
title_short Respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia
title_sort respiratory chain signalling is essential for adaptive remodelling following cardiac ischaemia
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131948/
https://www.ncbi.nlm.nih.gov/pubmed/32040259
http://dx.doi.org/10.1111/jcmm.15043
work_keys_str_mv AT szibormarten respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT schreckenbergrolf respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT gizatullinazemfira respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT dufoureric respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT wiesnetmarion respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT dhandapanipraveenk respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT debskavielhabergrazyna respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT heidlerjuliana respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT wittigilka respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT nymantuulaa respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT gartnerulrich respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT hallandrewr respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT pellvictoria respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT viscomicarlo respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT kriegthomas respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT murphymichaelp respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT braunthomas respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT gellerichfrankn respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT schluterklausdieter respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia
AT jacobshowardt respiratorychainsignallingisessentialforadaptiveremodellingfollowingcardiacischaemia