Cargando…

Change of influenza pandemics because of climate change: Complex network simulations

INTRODUCTION: Airborne influenza virus transmission is depending on climate. Infected individuals are able to travel to any country in the world within one day. In this study we combine these two insights to investigate the influence of climate change on pandemic spreading patterns of airborne infec...

Descripción completa

Detalles Bibliográficos
Autores principales: Brenner, F., Marwan, N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier Masson SAS 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131967/
http://dx.doi.org/10.1016/j.respe.2018.05.513
_version_ 1783517354346414080
author Brenner, F.
Marwan, N.
author_facet Brenner, F.
Marwan, N.
author_sort Brenner, F.
collection PubMed
description INTRODUCTION: Airborne influenza virus transmission is depending on climate. Infected individuals are able to travel to any country in the world within one day. In this study we combine these two insights to investigate the influence of climate change on pandemic spreading patterns of airborne infectious diseases, like influenza. Well-known recent examples for pandemics are severe acute respiratory syndrome (SARS, 2002/2003) and H1N1 (Influenza A virus subtype, 2009), which have demonstrated the vulnerability of a strongly connected world. METHODS: Our study is based on a complex network approach including the following datasets:  –global air traffic data (from openflights.org) with information on airports, direct flight connections, and airplane types;  –global population grid [from Socioeconomic Data and Applications Center (SEDAC), NASA];  –WATCH-Forcing-Data-ERA-Interim (WFDEI) climate reanalysis data (1980–2015) and RCP6.0 climate projection data (2016–2040): temperature, specific humidity, surface air pressure, water vapour pressure. We use the dependency between water vapour pressure and influenza transmission rate to give every location around the globe a unique transmission rate time series from 1980 until 2040. Local disease development is simulated with a stochastic SEIR compartmental model. All individuals (including infectious ones) are able to migrate from location to location via air traffic to simulate global dissemination of the virus. RESULTS: Our results show which regions are most vulnerable to climate change in terms of influenza pandemics towards key target locations (defined by highest degree, highest population, highest betweenness centrality). Furthermore, we point out the influence of climate change on pandemics from 1980 until 2040. A significant trend in the pandemic rate of spreading can be seen on a global scale. Climate change causes an influenza pandemic to proceed 5 days slower (global average) in the year 2040 compared to the year 1980. This trend varies from country to country. For example, pandemics originating from Chad show an accelerated (6 days faster) spread. CONCLUSION: The presented results focus on the effect that climate change has on spreading patterns of airborne infectious diseases. The change from 1980 until 2040 of important influencing variables like population distribution, varying air traffic, vaccine research, hygiene, and healthcare are neglected to separate the impact of climate change.
format Online
Article
Text
id pubmed-7131967
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Published by Elsevier Masson SAS
record_format MEDLINE/PubMed
spelling pubmed-71319672020-04-08 Change of influenza pandemics because of climate change: Complex network simulations Brenner, F. Marwan, N. Rev Epidemiol Sante Publique P10-7 INTRODUCTION: Airborne influenza virus transmission is depending on climate. Infected individuals are able to travel to any country in the world within one day. In this study we combine these two insights to investigate the influence of climate change on pandemic spreading patterns of airborne infectious diseases, like influenza. Well-known recent examples for pandemics are severe acute respiratory syndrome (SARS, 2002/2003) and H1N1 (Influenza A virus subtype, 2009), which have demonstrated the vulnerability of a strongly connected world. METHODS: Our study is based on a complex network approach including the following datasets:  –global air traffic data (from openflights.org) with information on airports, direct flight connections, and airplane types;  –global population grid [from Socioeconomic Data and Applications Center (SEDAC), NASA];  –WATCH-Forcing-Data-ERA-Interim (WFDEI) climate reanalysis data (1980–2015) and RCP6.0 climate projection data (2016–2040): temperature, specific humidity, surface air pressure, water vapour pressure. We use the dependency between water vapour pressure and influenza transmission rate to give every location around the globe a unique transmission rate time series from 1980 until 2040. Local disease development is simulated with a stochastic SEIR compartmental model. All individuals (including infectious ones) are able to migrate from location to location via air traffic to simulate global dissemination of the virus. RESULTS: Our results show which regions are most vulnerable to climate change in terms of influenza pandemics towards key target locations (defined by highest degree, highest population, highest betweenness centrality). Furthermore, we point out the influence of climate change on pandemics from 1980 until 2040. A significant trend in the pandemic rate of spreading can be seen on a global scale. Climate change causes an influenza pandemic to proceed 5 days slower (global average) in the year 2040 compared to the year 1980. This trend varies from country to country. For example, pandemics originating from Chad show an accelerated (6 days faster) spread. CONCLUSION: The presented results focus on the effect that climate change has on spreading patterns of airborne infectious diseases. The change from 1980 until 2040 of important influencing variables like population distribution, varying air traffic, vaccine research, hygiene, and healthcare are neglected to separate the impact of climate change. Published by Elsevier Masson SAS 2018-07 2018-07-06 /pmc/articles/PMC7131967/ http://dx.doi.org/10.1016/j.respe.2018.05.513 Text en Copyright © 2018 Published by Elsevier Masson SAS. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle P10-7
Brenner, F.
Marwan, N.
Change of influenza pandemics because of climate change: Complex network simulations
title Change of influenza pandemics because of climate change: Complex network simulations
title_full Change of influenza pandemics because of climate change: Complex network simulations
title_fullStr Change of influenza pandemics because of climate change: Complex network simulations
title_full_unstemmed Change of influenza pandemics because of climate change: Complex network simulations
title_short Change of influenza pandemics because of climate change: Complex network simulations
title_sort change of influenza pandemics because of climate change: complex network simulations
topic P10-7
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131967/
http://dx.doi.org/10.1016/j.respe.2018.05.513
work_keys_str_mv AT brennerf changeofinfluenzapandemicsbecauseofclimatechangecomplexnetworksimulations
AT marwann changeofinfluenzapandemicsbecauseofclimatechangecomplexnetworksimulations