Cargando…
Multiphase CT-based prediction of Child-Pugh classification: a machine learning approach
BACKGROUND: To evaluate whether machine learning algorithms allow the prediction of Child-Pugh classification on clinical multiphase computed tomography (CT). METHODS: A total of 259 patients who underwent diagnostic abdominal CT (unenhanced, contrast-enhanced arterial, and venous phases) were inclu...
Autores principales: | Thüring, Johannes, Rippel, Oliver, Haarburger, Christoph, Merhof, Dorit, Schad, Philipp, Bruners, Philipp, Kuhl, Christiane K., Truhn, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7131973/ https://www.ncbi.nlm.nih.gov/pubmed/32249336 http://dx.doi.org/10.1186/s41747-020-00148-3 |
Ejemplares similares
-
Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Haarburger, Christoph, et al.
Publicado: (2020) -
Author Correction: Radiomics feature reproducibility under inter-rater variability in segmentations of CT images
por: Haarburger, Christoph, et al.
Publicado: (2021) -
Automated major psoas muscle volumetry in computed tomography using machine learning algorithms
por: Duong, Felix, et al.
Publicado: (2021) -
Correction to: An MRI‑compatible varus–valgus loading device for whole‑knee joint functionality assessment based on compartmental compression: a proof‑of‑concept study
por: Said, Oliver, et al.
Publicado: (2021) -
An MRI-compatible varus–valgus loading device for whole-knee joint functionality assessment based on compartmental compression: a proof-of-concept study
por: Said, Oliver, et al.
Publicado: (2020)